These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32190959)

  • 21. Light-Addressable Ion Sensing for Real-Time Monitoring of Extracellular Potassium.
    Yang Y; Cuartero M; Gonçales VR; Gooding JJ; Bakker E
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16801-16805. PubMed ID: 30397985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Textile-based sampling for potentiometric determination of ions.
    Lisak G; Arnebrant T; Ruzgas T; Bobacka J
    Anal Chim Acta; 2015 Jun; 877():71-9. PubMed ID: 26002212
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An improved Na+-selective microelectrode for intracellular measurements in plant cells.
    Carden DE; Diamond D; Miller AJ
    J Exp Bot; 2001 Jun; 52(359):1353-9. PubMed ID: 11432954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Raman Fiber Photometry for Understanding Mitochondrial Superoxide Burst and Extracellular Calcium Ion Influx upon Acute Hypoxia in the Brain of Freely Moving Animals.
    Liu Z; Zhang Z; Liu Y; Mei Y; Feng E; Liu Y; Zheng T; Chen J; Zhang S; Tian Y
    Angew Chem Int Ed Engl; 2022 Mar; 61(11):e202111630. PubMed ID: 35224847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy.
    Gunthorpe MJ; Large CH; Sankar R
    Epilepsia; 2012 Mar; 53(3):412-24. PubMed ID: 22220513
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Imaging Sodium Flux during Action Potentials in Neurons with Fluorescent Nanosensors and Transparent Microelectrodes.
    Rong G; Kim EH; Qiang Y; Di W; Zhong Y; Zhao X; Fang H; Clark HA
    ACS Sens; 2018 Dec; 3(12):2499-2505. PubMed ID: 30358986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and preparation of open circuit potential biosensor for in vitro and in vivo glucose monitoring.
    Song Y; Su D; Shen Y; Liu H; Wang L
    Anal Bioanal Chem; 2017 Jan; 409(1):161-168. PubMed ID: 27730259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-Term Tracking and Dynamically Quantifying of Reversible Changes of Extracellular Ca
    Liu Y; Liu Z; Zhao F; Tian Y
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14429-14437. PubMed ID: 33797152
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single Biosensor for Simultaneous Quantification of Glucose and pH in a Rat Brain of Diabetic Model Using Both Current and Potential Outputs.
    Li S; Zhu A; Zhu T; Zhang JZH; Tian Y
    Anal Chem; 2017 Jun; 89(12):6656-6662. PubMed ID: 28560874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel method for measuring intracellular pH and potassium concentration.
    Bashford CL; Alder G; Micklem KJ; Pasternak CA
    Biosci Rep; 1983 Jul; 3(7):631-42. PubMed ID: 6313090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Triple-barrelled ion-sensitive microelectrode for simultaneous measurements of two extracellular ion activities.
    Dufau E; Acker H; Sylvester D
    Med Prog Technol; 1982; 9(1):33-8. PubMed ID: 6290863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designing Recognition Molecules and Tailoring Functional Surfaces for In Vivo Monitoring of Small Molecules in the Brain.
    Zhang L; Tian Y
    Acc Chem Res; 2018 Mar; 51(3):688-696. PubMed ID: 29485847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microelectrode Arrays Modified with Nanocomposites for Monitoring Dopamine and Spike Firings under Deep Brain Stimulation in Rat Models of Parkinson's Disease.
    Xiao G; Song Y; Zhang Y; Xing Y; Zhao H; Xie J; Xu S; Gao F; Wang M; Xing G; Cai X
    ACS Sens; 2019 Aug; 4(8):1992-2000. PubMed ID: 31272150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methodology for coupling local application of dopamine and other chemicals with rapid in vivo electrochemical recordings in freely-moving rats.
    Gerhardt GA; Ksir C; Pivik C; Dickinson SD; Sabeti J; Zahniser NR
    J Neurosci Methods; 1999 Feb; 87(1):67-76. PubMed ID: 10065995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Galvanic Redox Potentiometry Based Microelectrode Array for Synchronous Ascorbate and Single-Unit Recordings in Rat Brain.
    Wei H; Li L; Jin J; Wu F; Yu P; Ma F; Mao L
    Anal Chem; 2020 Jul; 92(14):10177-10182. PubMed ID: 32600032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chronic recording and electrochemical performance of Utah microelectrode arrays implanted in rat motor cortex.
    Black BJ; Kanneganti A; Joshi-Imre A; Rihani R; Chakraborty B; Abbott J; Pancrazio JJ; Cogan SF
    J Neurophysiol; 2018 Oct; 120(4):2083-2090. PubMed ID: 30020844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release.
    Vervaeke K; Gu N; Agdestein C; Hu H; Storm JF
    J Physiol; 2006 Oct; 576(Pt 1):235-56. PubMed ID: 16840518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct in Vivo Electrochemical Detection of Resting Dopamine Using Poly(3,4-ethylenedioxythiophene)/Carbon Nanotube Functionalized Microelectrodes.
    Taylor IM; Patel NA; Freedman NC; Castagnola E; Cui XT
    Anal Chem; 2019 Oct; 91(20):12917-12927. PubMed ID: 31512849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical biochip for applications to wireless and batteryless monitoring of free-moving mice.
    Baj-Rossi C; De Micheli G; Carrara S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2020-3. PubMed ID: 25570380
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.