These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32190982)

  • 41. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry.
    Lei Z; Yang Q; Xu Y; Guo S; Sun W; Liu H; Lv LP; Zhang Y; Wang Y
    Nat Commun; 2018 Feb; 9(1):576. PubMed ID: 29422540
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Carbon-Coated Fe
    Zhao ZW; Wen T; Liang K; Jiang YF; Zhou X; Shen CC; Xu AW
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3757-3765. PubMed ID: 28071884
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Azo compounds as a family of organic electrode materials for alkali-ion batteries.
    Luo C; Borodin O; Ji X; Hou S; Gaskell KJ; Fan X; Chen J; Deng T; Wang R; Jiang J; Wang C
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2004-2009. PubMed ID: 29440381
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced Lithium Storage Capacity of a Tetralithium 1,2,4,5-Benzenetetracarboxylate (Li
    Cahyadi HS; William W; Verma D; Kwak SK; Kim J
    ACS Appl Mater Interfaces; 2018 May; 10(20):17183-17194. PubMed ID: 29708718
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ethoxycarbonyl-based organic electrode for Li-batteries.
    Walker W; Grugeon S; Mentre O; Laruelle S; Tarascon JM; Wudl F
    J Am Chem Soc; 2010 May; 132(18):6517-23. PubMed ID: 20405915
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Indigo carmine: an organic crystal as a positive-electrode material for rechargeable sodium batteries.
    Yao M; Kuratani K; Kojima T; Takeichi N; Senoh H; Kiyobayashi T
    Sci Rep; 2014 Jan; 4():3650. PubMed ID: 24413423
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dispersion-Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries.
    Zhang Y; Huang Y; Yang G; Bu F; Li K; Shakir I; Xu Y
    ACS Appl Mater Interfaces; 2017 May; 9(18):15549-15556. PubMed ID: 28425698
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NonAqueous, Metal-Free, and Hybrid Electrolyte Li-Ion O
    Deng H; Qiao Y; Wu S; Qiu F; Zhang N; He P; Zhou H
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4908-4914. PubMed ID: 30387593
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigation of PF6(-) and TFSI(-) anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries.
    Qi X; Blizanac B; DuPasquier A; Meister P; Placke T; Oljaca M; Li J; Winter M
    Phys Chem Chem Phys; 2014 Dec; 16(46):25306-13. PubMed ID: 25335810
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries.
    Wu JF; Pang WK; Peterson VK; Wei L; Guo X
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12461-12468. PubMed ID: 28332828
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiple Active Sites: Lithium Storage Mechanism of Cu-TCNQ as an Anode Material for Lithium-Ion Batteries.
    Meng C; Chen T; Fang C; Huang Y; Hu P; Tong Y; Bian T; Zhang J; Wang Z; Yuan A
    Chem Asian J; 2019 Dec; 14(23):4289-4295. PubMed ID: 31612624
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High Voltage LiNi
    Cao X; He X; Wang J; Liu H; Röser S; Rad BR; Evertz M; Streipert B; Li J; Wagner R; Winter M; Cekic-Laskovic I
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25971-25978. PubMed ID: 27618412
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phenothiazine-Based Organic Catholyte for High-Capacity and Long-Life Aqueous Redox Flow Batteries.
    Zhang C; Niu Z; Peng S; Ding Y; Zhang L; Guo X; Zhao Y; Yu G
    Adv Mater; 2019 Jun; 31(24):e1901052. PubMed ID: 30998269
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Redox-Active Porous Organic Polymers as Novel Electrode Materials for Green Rechargeable Sodium-Ion Batteries.
    Weeraratne KS; Alzharani AA; El-Kaderi HM
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23520-23526. PubMed ID: 31180204
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Self-Polymerized Nitro-Substituted Conjugated Carbonyl Compound as High-Performance Cathode for Lithium-Organic Batteries.
    Li Q; Wang H; Wang HG; Si Z; Li C; Bai J
    ChemSusChem; 2020 May; 13(9):2449-2456. PubMed ID: 31867898
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bio-Inspired Isoalloxazine Redox Moieties for Rechargeable Aqueous Zinc-Ion Batteries.
    Cheng L; Liang Y; Zhu Q; Yu D; Chen M; Liang J; Wang H
    Chem Asian J; 2020 Apr; 15(8):1290-1295. PubMed ID: 32166912
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An Insoluble Benzoquinone-Based Organic Cathode for Use in Rechargeable Lithium-Ion Batteries.
    Luo Z; Liu L; Zhao Q; Li F; Chen J
    Angew Chem Int Ed Engl; 2017 Oct; 56(41):12561-12565. PubMed ID: 28787540
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rechargeable Intermetallic Calcium-Lithium-O
    Kim MJ; Kang HJ; Im WB; Jun YS
    ChemSusChem; 2020 Feb; 13(3):574-581. PubMed ID: 31777180
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes.
    Fang W; Zhao H; Xie Y; Fang J; Xu J; Chen Z
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13044-52. PubMed ID: 26016687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.