These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32191273)

  • 1. Characterizing Strain Rate-Dependent Mechanical Properties for Bovine Cortical Bones.
    Lei J; Li L; Wang Z; Zhu F
    J Biomech Eng; 2020 Sep; 142(9):. PubMed ID: 32191273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hopkinson bar techniques for the intermediate strain rate testing of bovine cortical bone.
    Cloete TJ; Paul G; Ismail EB
    Philos Trans A Math Phys Eng Sci; 2014 May; 372(2015):20130210. PubMed ID: 24711493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates.
    Johnson TP; Socrate S; Boyce MC
    Acta Biomater; 2010 Oct; 6(10):4073-80. PubMed ID: 20417735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constant strain rate compression of bovine cortical bone on the Split-Hopkinson Pressure Bar.
    Bekker A; Cloete TJ; Chinsamy-Turan A; Nurick GN; Kok S
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():443-9. PubMed ID: 25492009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of gamma radiation sterilization and strain rate on compressive behavior of equine cortical bone.
    Tüfekci K; Kayacan R; Kurbanoğlu C
    J Mech Behav Biomed Mater; 2014 Jun; 34():231-42. PubMed ID: 24607761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear viscoelastic characterization of bovine trabecular bone.
    Manda K; Wallace RJ; Xie S; Levrero-Florencio F; Pankaj P
    Biomech Model Mechanobiol; 2017 Feb; 16(1):173-189. PubMed ID: 27440127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.
    Asgharpour Z; Zioupos P; Graw M; Peldschus S
    Forensic Sci Int; 2014 Mar; 236():109-16. PubMed ID: 24529781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive mechanical properties of bovine cortical bone under varied loading rates.
    Yu B; Zhao GF; Lim JI; Lee YK
    Proc Inst Mech Eng H; 2011 Oct; 225(10):941-7. PubMed ID: 22204116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromechanisms of Cortical Bone Failure Under Different Loading Conditions.
    Sharma NK; Sharma S; Rathi A; Kumar A; Saini KV; Sarker MD; Naghieh S; Ning L; Chen X
    J Biomech Eng; 2020 Sep; 142(9):. PubMed ID: 32191275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on constitutive equation that models bone tissue.
    Pawlikowski M; Klasztorny M; Skalski K
    Acta Bioeng Biomech; 2008; 10(4):39-47. PubMed ID: 19385511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues.
    Abdel-Wahab AA; Alam K; Silberschmidt VV
    J Mech Behav Biomed Mater; 2011 Jul; 4(5):807-20. PubMed ID: 21565728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone.
    Hosseinzadeh M; Ghoreishi M; Narooei K
    J Mech Behav Biomed Mater; 2016 Jun; 59():393-403. PubMed ID: 26953961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-dependent stress relaxation behavior of healthy right ventricular free wall.
    Liu W; Labus KM; Ahern M; LeBar K; Avazmohammadi R; Puttlitz CM; Wang Z
    Acta Biomater; 2022 Oct; 152():290-299. PubMed ID: 36030049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Elastic-Plastic Fracture Behavior of Cortical Bone Using a Small Punch Testing Technique.
    Singh J; Sharma NK; Sarker MD; Naghieh S; Sehgal SS; Chen DXB
    J Biomech Eng; 2020 Jan; 142(1):. PubMed ID: 31141595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic properties of wet cortical bone--III. A non-linear constitutive equation.
    Lakes RS; Katz JL
    J Biomech; 1979; 12(9):689-98. PubMed ID: 489636
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of organic matrix alteration on strain rate dependent mechanical behaviour of cortical bone.
    Uniyal P; Sihota P; Kumar N
    J Mech Behav Biomed Mater; 2022 Jan; 125():104910. PubMed ID: 34700105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element modeling for strain rate dependency of fracture resistance in compact bone.
    Charoenphan S; Polchai A
    J Biomech Eng; 2007 Feb; 129(1):20-5. PubMed ID: 17227094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain state dependent anisotropic viscoelasticity of tendon-to-bone insertion.
    Kuznetsov S; Pankow M; Peters K; Huang HS
    Math Biosci; 2019 Feb; 308():1-7. PubMed ID: 30537481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.