BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32191287)

  • 1. A Proposed Classification of Intraretinal Microvascular Abnormalities in Diabetic Retinopathy Following Panretinal Photocoagulation.
    Shimouchi A; Ishibazawa A; Ishiko S; Omae T; Ro-Mase T; Yanagi Y; Yoshida A
    Invest Ophthalmol Vis Sci; 2020 Mar; 61(3):34. PubMed ID: 32191287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Longitudinal Angiographic Evidence That Intraretinal Microvascular Abnormalities Can Evolve into Neovascularization.
    Russell JF; Shi Y; Scott NL; Gregori G; Rosenfeld PJ
    Ophthalmol Retina; 2020 Dec; 4(12):1146-1150. PubMed ID: 32544625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal Wide-Field Swept-Source OCT Angiography of Neovascularization in Proliferative Diabetic Retinopathy after Panretinal Photocoagulation.
    Russell JF; Shi Y; Hinkle JW; Scott NL; Fan KC; Lyu C; Gregori G; Rosenfeld PJ
    Ophthalmol Retina; 2019 Apr; 3(4):350-361. PubMed ID: 31014688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DISTINGUISHING INTRARETINAL MICROVASCULAR ABNORMALITIES FROM RETINAL NEOVASCULARIZATION USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.
    Arya M; Sorour O; Chaudhri J; Alibhai Y; Waheed NK; Duker JS; Baumal CR
    Retina; 2020 Sep; 40(9):1686-1695. PubMed ID: 31613839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal Nonperfusion in Proliferative Diabetic Retinopathy Before and After Panretinal Photocoagulation Assessed by Widefield OCT Angiography.
    Russell JF; Al-Khersan H; Shi Y; Scott NL; Hinkle JW; Fan KC; Lyu C; Feuer WJ; Gregori G; Rosenfeld PJ
    Am J Ophthalmol; 2020 May; 213():177-185. PubMed ID: 32006481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of Neovascularization in Early Stages of Proliferative Diabetic Retinopathy by Optical Coherence Tomography Angiography.
    Pan J; Chen D; Yang X; Zou R; Zhao K; Cheng D; Huang S; Zhou T; Yang Y; Chen F
    Am J Ophthalmol; 2018 Aug; 192():146-156. PubMed ID: 29806991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological changes in intraretinal microvascular abnormalities after anti-VEGF therapy visualized on optical coherence tomography angiography.
    Sorour OA; Mehta N; Baumal CR; Ishibazawa A; Liu K; Konstantinou EK; Martin S; Braun P; Alibhai AY; Arya M; Witkin AJ; Duker JS; Waheed NK
    Eye Vis (Lond); 2020; 7():29. PubMed ID: 32514410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical coherence tomography angiography reveals progressive worsening of retinal vascular geometry in diabetic retinopathy and improved geometry after panretinal photocoagulation.
    Fayed AE; Abdelbaki AM; El Zawahry OM; Fawzi AA
    PLoS One; 2019; 14(12):e0226629. PubMed ID: 31887149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different scan areas affect the detection rates of diabetic retinopathy lesions by high-speed ultra-widefield swept-source optical coherence tomography angiography.
    Li M; Mao M; Wei D; Liu M; Liu X; Leng H; Wang Y; Chen S; Zhang R; Zeng Y; Wang M; Li J; Zhong J
    Front Endocrinol (Lausanne); 2023; 14():1111360. PubMed ID: 36891051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of Retinal Neovascularization in Proliferative Diabetic Retinopathy Imaged by Optical Coherence Tomography Angiography.
    Ishibazawa A; Nagaoka T; Yokota H; Takahashi A; Omae T; Song YS; Takahashi T; Yoshida A
    Invest Ophthalmol Vis Sci; 2016 Nov; 57(14):6247-6255. PubMed ID: 27849310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinically Significant Nonperfusion Areas on Widefield OCT Angiography in Diabetic Retinopathy.
    Kawai K; Murakami T; Mori Y; Ishihara K; Dodo Y; Terada N; Nishikawa K; Morino K; Tsujikawa A
    Ophthalmol Sci; 2023 Mar; 3(1):100241. PubMed ID: 36545265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ranibizumab Plus Panretinal Photocoagulation versus Panretinal Photocoagulation Alone for High-Risk Proliferative Diabetic Retinopathy (PROTEUS Study).
    Figueira J; Fletcher E; Massin P; Silva R; Bandello F; Midena E; Varano M; Sivaprasad S; Eleftheriadis H; Menon G; Amaro M; Ayello Scheer S; Creuzot-Garcher C; Nascimento J; Alves D; Nunes S; Lobo C; Cunha-Vaz J;
    Ophthalmology; 2018 May; 125(5):691-700. PubMed ID: 29395119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal changes in retinal vascular parameters associated with successful panretinal photocoagulation in proliferative diabetic retinopathy: A prospective clinical interventional study.
    Torp TL; Kawasaki R; Wong TY; Peto T; Grauslund J
    Acta Ophthalmol; 2018 Jun; 96(4):405-410. PubMed ID: 29193789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Macular Capillary Flow on Optical Coherence Tomography Angiography After Panretinal Photocoagulation for Proliferative Diabetic Retinopathy.
    Fawzi AA; Fayed AE; Linsenmeier RA; Gao J; Yu F
    Am J Ophthalmol; 2019 Oct; 206():217-227. PubMed ID: 31078542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors Associated with Worsening Proliferative Diabetic Retinopathy in Eyes Treated with Panretinal Photocoagulation or Ranibizumab.
    Bressler SB; Beaulieu WT; Glassman AR; Gross JG; Jampol LM; Melia M; Peters MA; Rauser ME;
    Ophthalmology; 2017 Apr; 124(4):431-439. PubMed ID: 28161147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Coherence Tomography Angiography Findings in Proliferative Diabetic Retinopathy.
    Kilani A; Werner JU; Lang GK; Lang GE
    Ophthalmologica; 2021; 244(3):258-264. PubMed ID: 33902045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of retinal neovascularization using optical coherence tomography angiography after panretinal photocoagulation for proliferative diabetic retinopathy.
    Feng HE; Weihong YU; Dong F
    BMC Ophthalmol; 2021 Jun; 21(1):252. PubMed ID: 34098891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal analysis of subfoveal choroidal thickness after panretinal laser photocoagulation in diabetic retinopathy using swept-source optical coherence tomography.
    Eleiwa KT; Bayoumy A; Elhusseiny MA; Gamil K; Sharawy A
    Rom J Ophthalmol; 2020; 64(3):285-291. PubMed ID: 33367162
    [No Abstract]   [Full Text] [Related]  

  • 19. ULTRAHIGH SPEED SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF RETINAL AND CHORIOCAPILLARIS ALTERATIONS IN DIABETIC PATIENTS WITH AND WITHOUT RETINOPATHY.
    Choi W; Waheed NK; Moult EM; Adhi M; Lee B; De Carlo T; Jayaraman V; Baumal CR; Duker JS; Fujimoto JG
    Retina; 2017 Jan; 37(1):11-21. PubMed ID: 27557084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal neovascular changes on optical coherence tomography angiography in proliferative diabetic retinopathy treated with panretinal photocoagulation alone versus with intravitreal conbercept plus panretinal photocoagulation: a pilot study.
    He F; Yu W
    Eye (Lond); 2020 Aug; 34(8):1413-1418. PubMed ID: 31719675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.