These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32191489)

  • 21. Stable Superwetting Meshes for On-Demand Separation of Immiscible Oil/Water Mixtures and Emulsions.
    Liu M; Hou Y; Li J; Guo Z
    Langmuir; 2017 Apr; 33(15):3702-3710. PubMed ID: 28345927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laser-Heat Surface Treatment of Superwetting Copper Foam for Efficient Oil-Water Separation.
    Wang Q; Liu C; Wang H; Yin K; Yu Z; Wang T; Ye M; Pei X; Liu X
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH-Manipulated Underwater-Oil Adhesion Wettability Behavior on the Micro/Nanoscale Semicircular Structure and Related Thermodynamic Analysis.
    Tie L; Guo Z; Liu W
    ACS Appl Mater Interfaces; 2015 May; 7(19):10641-9. PubMed ID: 25919443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Underwater superoleophilicity to superoleophobicity: role of trapped air.
    Jin M; Li S; Wang J; Xue Z; Liao M; Wang S
    Chem Commun (Camb); 2012 Dec; 48(96):11745-7. PubMed ID: 23113322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Closed Pore Structured NiCo
    Li Y; Zheng X; Yan Z; Tian D; Ma J; Zhang X; Jiang L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29177-29184. PubMed ID: 28799749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emerging Separation Applications of Surface Superwettability.
    Yong J; Yang Q; Hou X; Chen F
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organic Media Superwettability: On-Demand Liquid Separation by Controlling Surface Chemistry.
    Tie L; Li J; Liu M; Guo Z; Liang Y; Liu W
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37634-37642. PubMed ID: 30295023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional adsorbent with pH induced superhydrophobic and superhydrophilic transformation for oil recycle and adsorbent regeneration.
    Tang L; Wang G; Zeng Z; Shen L; Zhu L; Zhang Y; Xue Q
    J Colloid Interface Sci; 2020 Sep; 575():231-244. PubMed ID: 32361239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interfacial material system exhibiting superwettability.
    Tian Y; Su B; Jiang L
    Adv Mater; 2014 Oct; 26(40):6872-97. PubMed ID: 25042795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reversible Wettability between Underwater Superoleophobicity and Superhydrophobicity of Stainless Steel Mesh for Efficient Oil-Water Separation.
    Wang J; Xu J; Chen G; Lian Z; Yu H
    ACS Omega; 2021 Jan; 6(1):77-84. PubMed ID: 33458461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Under-Oil Switchable Superhydrophobicity to Superhydrophilicity Transition on TiO
    Kang H; Liu Y; Lai H; Yu X; Cheng Z; Jiang L
    ACS Nano; 2018 Feb; 12(2):1074-1082. PubMed ID: 29338192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Smart candle soot coated membranes for on-demand immiscible oil/water mixture and emulsion switchable separation.
    Li J; Zhao Z; Li D; Tian H; Zha F; Feng H; Guo L
    Nanoscale; 2017 Sep; 9(36):13610-13617. PubMed ID: 28876001
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A surface exhibiting superoleophobicity both in air and in seawater.
    Zhang G; Zhang X; Huang Y; Su Z
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6400-3. PubMed ID: 23758754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A robust surface with superhydrophobicity and underwater superoleophobicity for on-demand oil/water separation.
    Zhao S; Liang Y; Yang Y; Huang J; Guo Z; Liu W
    Nanoscale; 2021 Sep; 13(36):15334-15342. PubMed ID: 34494623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D Printing of an Oil/Water Mixture Separator with In Situ Demulsification and Separation.
    Yan C; Ma S; Ji Z; Guo Y; Liu Z; Zhang X; Wang X
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31052425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Durable Light-Driven Three-Dimensional Smart Switchable Superwetting Nanotextile as a Green Scaled-Up Oil-Water Separation Technology.
    Shami Z; Holakooei P
    ACS Omega; 2020 Mar; 5(10):4962-4972. PubMed ID: 32201782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A general and facile chemical avenue for the controlled and extreme regulation of water wettability in air and oil wettability under water.
    Parbat D; Gaffar S; Rather AM; Gupta A; Manna U
    Chem Sci; 2017 Sep; 8(9):6542-6554. PubMed ID: 28989680
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Femtosecond Laser Microfabrication of Porous Superwetting Materials for Oil/Water Separation: A Mini-Review.
    Feng N; Yong J
    Front Chem; 2020; 8():585723. PubMed ID: 33102449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modified-MOF-808-Loaded Polyacrylonitrile Membrane for Highly Efficient, Simultaneous Emulsion Separation and Heavy Metal Ion Removal.
    Chen X; Chen D; Li N; Xu Q; Li H; He J; Lu J
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39227-39235. PubMed ID: 32805808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled Movement of a Smart Miniature Submarine at Various Interfaces.
    Chu Y; Qin L; Zhen L; Pan Q
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24899-24904. PubMed ID: 29943972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.