BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32191622)

  • 1. Mass spectrometry and total laboratory automation: opportunities and drawbacks.
    Salvagno GL; Danese E; Lippi G
    Clin Chem Lab Med; 2020 Jun; 58(6):994-1001. PubMed ID: 32191622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunosuppressant therapeutic drug monitoring by LC-MS/MS: workflow optimization through automated processing of whole blood samples.
    Marinova M; Artusi C; Brugnolo L; Antonelli G; Zaninotto M; Plebani M
    Clin Biochem; 2013 Nov; 46(16-17):1723-7. PubMed ID: 24012696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concepts for the third generation of laboratory systems.
    Hoffmann GE
    Clin Chim Acta; 1998 Dec; 278(2):203-16. PubMed ID: 10023828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of automation on mass spectrometry.
    Zhang YV; Rockwood A
    Clin Chim Acta; 2015 Oct; 450():298-303. PubMed ID: 26341893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automation of chromatographic peak review and order to result data transfer in a clinical mass spectrometry laboratory.
    Vicente FB; Lin DC; Haymond S
    Clin Chim Acta; 2019 Nov; 498():84-89. PubMed ID: 31421120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully automated peptide mapping multi-attribute method by liquid chromatography-mass spectrometry with robotic liquid handling system.
    Qian C; Niu B; Jimenez RB; Wang J; Albarghouthi M
    J Pharm Biomed Anal; 2021 May; 198():113988. PubMed ID: 33676166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the 25-hydroxy vitamin D assay on a fully automated liquid chromatography mass spectrometry system, the Thermo Scientific Cascadion SM Clinical Analyzer with the Cascadion 25-hydroxy vitamin D assay in a routine clinical laboratory.
    Benton SC; Tetteh GK; Needham SJ; Mücke J; Sheppard L; Alderson S; Ruppen C; Curti M; Redondo M; Milan AM
    Clin Chem Lab Med; 2020 Jun; 58(6):1010-1017. PubMed ID: 31851610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Workflow improvement and impact of the new Beckman Coulter LH 1500 high throughput automated hematology workcell.
    La Porta AD; Bowden AS; Barr S
    Lab Hematol; 2004; 10(2):95-101. PubMed ID: 15224765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technological advances in the hemostasis laboratory.
    Lippi G; Plebani M; Favaloro EJ
    Semin Thromb Hemost; 2014 Mar; 40(2):178-85. PubMed ID: 24443219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An automated sample preparation approach for routine liquid chromatography tandem-mass spectrometry measurement of the alcohol biomarkers phosphatidylethanol 16:0/18:1, 16:0/16:0 and 18:1/18:1.
    Casati S; Ravelli A; Angeli I; Durello R; Minoli M; Orioli M
    J Chromatogr A; 2019 Mar; 1589():1-9. PubMed ID: 30598290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significant Operational Improvements with Implementation of Next Generation Laboratory Automation.
    Tanasijevic MJ; Melanson SEF; Tolan NV; Ransohoff JR; Conrad MJ; Paik HI; Petrides AK
    Lab Med; 2021 Jul; 52(4):329-337. PubMed ID: 33438745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining and Managing the Preanalytical Phase With FMECA: Automation and/or "Human" Control.
    Bellini C; Guerranti R; Cinci F; Milletti E; Scapellato C
    Hum Factors; 2020 Feb; 62(1):20-36. PubMed ID: 31525072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully automated determination of nicotine and its major metabolites in whole blood by means of a DBS online-SPE LC-HR-MS/MS approach for sports drug testing.
    Tretzel L; Thomas A; Piper T; Hedeland M; Geyer H; Schänzer W; Thevis M
    J Pharm Biomed Anal; 2016 May; 123():132-40. PubMed ID: 26896632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonanalytic Laboratory Automation: A Quarter Century of Progress.
    Hawker CD
    Clin Chem; 2017 Jun; 63(6):1074-1082. PubMed ID: 28396562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated saliva processing for LC-MS/MS: Improving laboratory efficiency in cortisol and cortisone testing.
    Antonelli G; Padoan A; Artusi C; Marinova M; Zaninotto M; Plebani M
    Clin Biochem; 2016 Apr; 49(6):518-520. PubMed ID: 26708175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous-flow automation and hemolysis index: a crucial combination.
    Lippi G; Plebani M
    J Lab Autom; 2013 Apr; 18(2):184-8. PubMed ID: 22713757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating Mobile Robots into Automated Laboratory Processes: A Suitable Workflow Management System.
    Thurow K; Gu X; Göde B; Roddelkopf T; Fleischer H; Stoll N; Neubert S
    SLAS Technol; 2021 Apr; 26(2):232-235. PubMed ID: 33181045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The application of fully automated dried blood spot analysis for liquid chromatography-tandem mass spectrometry using the CAMAG DBS-MS 500 autosampler.
    Luginbühl M; Gaugler S
    Clin Biochem; 2020 Aug; 82():33-39. PubMed ID: 32087137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Reproducible Automated Proteomics Sample Preparation Workflow for Quantitative Mass Spectrometry.
    Fu Q; Kowalski MP; Mastali M; Parker SJ; Sobhani K; van den Broek I; Hunter CL; Van Eyk JE
    J Proteome Res; 2018 Jan; 17(1):420-428. PubMed ID: 29083196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Semi-Automated Tuberculosis Testing Workflow Reduces Manual Hazardous Sample Handling and Hands-On Time: A Proof-of-Concept Study.
    Miller KWP; Grossman N; Haviernik P; Wolff J; Fu CL; Bare B; Sindelar E
    SLAS Technol; 2020 Jun; 25(3):253-257. PubMed ID: 31674264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.