BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32191837)

  • 41. Preliminary evidence of nanoparticle occurrence in water from different regions of Delhi (India).
    Baranidharan S; Kumar A
    Environ Monit Assess; 2018 Mar; 190(4):240. PubMed ID: 29568994
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification and quantification of titanium nanoparticles in surface water: A case study in Lake Taihu, China.
    Wu S; Zhang S; Gong Y; Shi L; Zhou B
    J Hazard Mater; 2020 Jan; 382():121045. PubMed ID: 31450206
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of gold and silver nanoparticles internalized by zebrafish (Danio rerio) using single particle-inductively coupled plasma-mass spectrometry.
    Sung HK; Jo E; Kim E; Yoo SK; Lee JW; Kim PJ; Kim Y; Eom IC
    Chemosphere; 2018 Oct; 209():815-822. PubMed ID: 30114729
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Study of the presence of pesticides in surface waters in the Ebro river basin (Spain).
    Claver A; Ormad P; Rodríguez L; Ovelleiro JL
    Chemosphere; 2006 Aug; 64(9):1437-43. PubMed ID: 16574191
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Occurrence and spatial distribution of EDCs and related compounds in waters and sediments of Iberian rivers.
    Gorga M; Insa S; Petrovic M; Barceló D
    Sci Total Environ; 2015 Jan; 503-504():69-86. PubMed ID: 25017635
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry.
    Yang Y; Long CL; Li HP; Wang Q; Yang ZG
    Sci Total Environ; 2016 Sep; 563-564():996-1007. PubMed ID: 26895948
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Determination of metal-based nanoparticles in the river Dommel in the Netherlands via ultrafiltration, HR-ICP-MS and SEM.
    Markus AA; Krystek P; Tromp PC; Parsons JR; Roex EWM; Voogt P; Laane RWPM
    Sci Total Environ; 2018 Aug; 631-632():485-495. PubMed ID: 29529437
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New insights into the formation of silver-based nanoparticles under natural and semi-natural conditions.
    Wimmer A; Kalinnik A; Schuster M
    Water Res; 2018 Sep; 141():227-234. PubMed ID: 29793162
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Uptake of Ag and TiO2 nanoparticles by zebrafish embryos in the presence of other contaminants in the aquatic environment.
    Pavagadhi S; Sathishkumar M; Balasubramanian R
    Water Res; 2014 May; 55():280-91. PubMed ID: 24631877
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of environmentally relevant concentrations of mixtures of TiO
    Londono N; Donovan AR; Shi H; Geisler M; Liang Y
    Chemosphere; 2019 Sep; 230():567-577. PubMed ID: 31125885
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact of TiO
    Londono N; Donovan AR; Shi H; Geisler M; Liang Y
    Nanotoxicology; 2017; 11(9-10):1140-1156. PubMed ID: 29125011
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Titanium in UK rural, agricultural and urban/industrial rivers: geogenic and anthropogenic colloidal/sub-colloidal sources and the significance of within-river retention.
    Neal C; Jarvie H; Rowland P; Lawler A; Sleep D; Scholefield P
    Sci Total Environ; 2011 Apr; 409(10):1843-53. PubMed ID: 21353288
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Occurrence and size distribution of silver nanoparticles in wastewater effluents from various treatment processes in Canada.
    Gagnon C; Turcotte P; Gagné F; Smyth SA
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):65952-65959. PubMed ID: 34327645
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The release of silver nanoparticles from commercial toothbrushes.
    Mackevica A; Olsson ME; Hansen SF
    J Hazard Mater; 2017 Jan; 322(Pt A):270-275. PubMed ID: 27045456
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Uptake, translocation, size characterization and localization of cerium oxide nanoparticles in radish (Raphanus sativus L.).
    Wojcieszek J; Jiménez-Lamana J; Bierła K; Ruzik L; Asztemborska M; Jarosz M; Szpunar J
    Sci Total Environ; 2019 Sep; 683():284-292. PubMed ID: 31132708
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct Quantification of Rare Earth Elements Concentrations in Urine of Workers Manufacturing Cerium, Lanthanum Oxide Ultrafine and Nanoparticles by a Developed and Validated ICP-MS.
    Li Y; Yu H; Zheng S; Miao Y; Yin S; Li P; Bian Y
    Int J Environ Res Public Health; 2016 Mar; 13(3):. PubMed ID: 27011194
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings.
    Trujillo-Reyes J; Vilchis-Nestor AR; Majumdar S; Peralta-Videa JR; Gardea-Torresdey JL
    J Hazard Mater; 2013 Dec; 263 Pt 2():677-84. PubMed ID: 24231324
    [TBL] [Abstract][Full Text] [Related]  

  • 58. TiO
    Liu J; Williams PC; Goodson BM; Geisler-Lee J; Fakharifar M; Gemeinhardt ME
    Environ Res; 2019 May; 172():202-215. PubMed ID: 30818230
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S.
    Baalousha M; Arkill KP; Romer I; Palmer RE; Lead JR
    Sci Total Environ; 2015 Jan; 502():344-53. PubMed ID: 25262296
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Looking at Silver-Based Nanoparticles in Environmental Water Samples: Repetitive Cloud Point Extraction Bridges Gaps in Electron Microscopy for Naturally Occurring Nanoparticles.
    Urstoeger A; Wimmer A; Kaegi R; Reiter S; Schuster M
    Environ Sci Technol; 2020 Oct; 54(19):12063-12071. PubMed ID: 32846092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.