These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32191837)

  • 81. Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques.
    Hsiao IL; Bierkandt FS; Reichardt P; Luch A; Huang YJ; Jakubowski N; Tentschert J; Haase A
    J Nanobiotechnology; 2016 Jun; 14(1):50. PubMed ID: 27334629
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Submicron silica spheres decorated with silver nanoparticles as a new effective sorbent for inorganic mercury in surface waters.
    Yordanova T; Vasileva P; Karadjova I; Nihtianova D
    Analyst; 2014 Mar; 139(6):1532-40. PubMed ID: 24479124
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Study of the presence of micro- and nanoparticles in drinks and foods by multiple analytical techniques.
    de la Calle I; Menta M; Klein M; Séby F
    Food Chem; 2018 Nov; 266():133-145. PubMed ID: 30381168
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity.
    Zhang W; Xiao B; Fang T
    Chemosphere; 2018 Jan; 191():324-334. PubMed ID: 29045933
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Separating dissolved silver from nanoparticulate silver is the key: Improved cloud-point-extraction hyphenated to single particle ICP-MS for comprehensive analysis of silver-based nanoparticles in real environmental samples down to single-digit nm particle sizes.
    Wimmer A; Urstoeger A; Hinke T; Aust M; Altmann PJ; Schuster M
    Anal Chim Acta; 2021 Mar; 1150():238198. PubMed ID: 33583555
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Silver nanoparticles assessment in moisturizing creams by ultrasound assisted extraction followed by sp-ICP-MS.
    Rujido-Santos I; Naveiro-Seijo L; Herbello-Hermelo P; Barciela-Alonso MDC; Bermejo-Barrera P; Moreda-Piñeiro A
    Talanta; 2019 May; 197():530-538. PubMed ID: 30771972
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber.
    Ma Y; Zhang P; Zhang Z; He X; Li Y; Zhang J; Zheng L; Chu S; Yang K; Zhao Y; Chai Z
    Nanotoxicology; 2015 Mar; 9(2):262-70. PubMed ID: 24877678
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Morphological, proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application.
    Salehi H; Chehregani A; Lucini L; Majd A; Gholami M
    Sci Total Environ; 2018 Mar; 616-617():1540-1551. PubMed ID: 29066204
    [TBL] [Abstract][Full Text] [Related]  

  • 90. In situ chemical transformations of silver nanoparticles along the water-sediment continuum.
    Khaksar M; Jolley DF; Sekine R; Vasilev K; Johannessen B; Donner E; Lombi E
    Environ Sci Technol; 2015 Jan; 49(1):318-25. PubMed ID: 25405257
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Stream dynamics and chemical transformations control the environmental fate of silver and zinc oxide nanoparticles in a watershed-scale model.
    Dale AL; Lowry GV; Casman EA
    Environ Sci Technol; 2015 Jun; 49(12):7285-93. PubMed ID: 26018454
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Arsenic speciation in river and estuarine waters from southwest Spain.
    Sánchez-Rodas D; Luis Gómez-Ariza J; Giráldez I; Velasco A; Morales E
    Sci Total Environ; 2005 Jun; 345(1-3):207-17. PubMed ID: 15919540
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry.
    Mitrano DM; Lesher EK; Bednar A; Monserud J; Higgins CP; Ranville JF
    Environ Toxicol Chem; 2012 Jan; 31(1):115-21. PubMed ID: 22012920
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Quantification and size characterisation of silver nanoparticles in environmental aqueous samples and consumer products by single particle-ICPMS.
    Aznar R; Barahona F; Geiss O; Ponti J; José Luis T; Barrero-Moreno J
    Talanta; 2017 Dec; 175():200-208. PubMed ID: 28841979
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Antibacterial properties of silver nanoparticles grown
    Gunputh UF; Le H; Lawton K; Besinis A; Tredwin C; Handy RD
    Nanotoxicology; 2020 Feb; 14(1):97-110. PubMed ID: 31566471
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Detection of nanoparticles in Dutch surface waters.
    Peters RJB; van Bemmel G; Milani NBL; den Hertog GCT; Undas AK; van der Lee M; Bouwmeester H
    Sci Total Environ; 2018 Apr; 621():210-218. PubMed ID: 29179077
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Occurrence and distribution of nonionic surfactants, their degradation products, and linear alkylbenzene sulfonates in coastal waters and sediments in Spain.
    Petrovic M; Fernández-Alba AR; Borrull F; Marce RM; González ME; Barceló D
    Environ Toxicol Chem; 2002 Jan; 21(1):37-46. PubMed ID: 11804059
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A polythiophene-silver nanocomposite for headspace needle trap extraction.
    Bagheri H; Banihashemi S; Jelvani S
    J Chromatogr A; 2016 Aug; 1460():1-8. PubMed ID: 27448719
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Counting Nanoplastics in Environmental Waters by Single Particle Inductively Coupled Plasma Mass Spectroscopy after Cloud-Point Extraction and
    Lai Y; Dong L; Li Q; Li P; Hao Z; Yu S; Liu J
    Environ Sci Technol; 2021 Apr; 55(8):4783-4791. PubMed ID: 33752329
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Separation and quantification of silver nanoparticles and silver ions using reversed phase high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry in combination with isotope dilution analysis.
    Sötebier CA; Weidner SM; Jakubowski N; Panne U; Bettmer J
    J Chromatogr A; 2016 Oct; 1468():102-108. PubMed ID: 27663727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.