BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32191878)

  • 21. An optoelectronic neural interface approach for precise superposition of optical and electrical stimulation in flexible array structures.
    Eickenscheidt M; Herrmann T; Weisshap M; Mittnacht A; Rudmann L; Zeck G; Stieglitz T
    Biosens Bioelectron; 2022 Jun; 205():114090. PubMed ID: 35227972
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene-Embedded Nanostructural Biotic-Abiotic Optoelectrode Arrays Applied for Synchronous Brain Optogenetics and Neural Signal Recording.
    Huang WC; Chi HS; Lee YC; Lo YC; Liu TC; Chiang MY; Chen HY; Li SJ; Chen YY; Chen SY
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11270-11282. PubMed ID: 30844235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graphene on glassy carbon microelectrodes demonstrate long-term structural and functional stability in neurophysiological recording and stimulation.
    Nimbalkar S; Samejima S; Dang V; Hunt T; Nunez O; Moritz C; Kassegne S
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34492644
    [No Abstract]   [Full Text] [Related]  

  • 25. Laser-Assisted Structuring of Graphene Films with Biocompatible Liquid Crystal Polymer for Skin/Brain-Interfaced Electrodes.
    Park R; Lee DH; Koh CS; Kwon YW; Chae SY; Kim CS; Jung HH; Jeong J; Hong SW
    Adv Healthc Mater; 2024 Jan; 13(3):e2301753. PubMed ID: 37820714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chronic in vivo stability assessment of carbon fiber microelectrode arrays.
    Patel PR; Zhang H; Robbins MT; Nofar JB; Marshall SP; Kobylarek MJ; Kozai TD; Kotov NA; Chestek CA
    J Neural Eng; 2016 Dec; 13(6):066002. PubMed ID: 27705958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential expression of genes involved in the chronic response to intracortical microelectrodes.
    Song S; Druschel LN; Chan ER; Capadona JR
    Acta Biomater; 2023 Oct; 169():348-362. PubMed ID: 37507031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free-Standing Carbon Nanotube Embroidered Graphene Film Electrode Array for Stable Neural Interfacing.
    Gao L; Lv S; Shang Y; Guan S; Tian H; Fang Y; Wang J; Li H
    Nano Lett; 2024 Jan; 24(3):829-835. PubMed ID: 38117186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation.
    Jiang X; Sui X; Lu Y; Yan Y; Zhou C; Li L; Ren Q; Chai X
    J Neuroeng Rehabil; 2013 May; 10():48. PubMed ID: 23718827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultra-low Impedance Graphene Microelectrodes with High Optical Transparency for Simultaneous Deep 2-photon Imaging in Transgenic Mice.
    Lu Y; Liu X; Hattori R; Ren C; Zhang X; Komiyama T; Kuzum D
    Adv Funct Mater; 2018 Aug; 28(31):. PubMed ID: 34084100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon-Fiber Based Microelectrode Array Embedded with a Biodegradable Silk Support for In Vivo Neural Recording.
    Lee Y; Kong C; Chang JW; Jun SB
    J Korean Med Sci; 2019 Jan; 34(4):e24. PubMed ID: 30686948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-term
    Jang JW; Kang YN; Seo HW; Kim B; Choe HK; Park SH; Lee MG; Kim S
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795067
    [No Abstract]   [Full Text] [Related]  

  • 34. A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology.
    Márton G; Orbán G; Kiss M; Fiáth R; Pongrácz A; Ulbert I
    PLoS One; 2015; 10(12):e0145307. PubMed ID: 26683306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.
    Zhang J; Liu X; Xu W; Luo W; Li M; Chu F; Xu L; Cao A; Guan J; Tang S; Duan X
    Nano Lett; 2018 May; 18(5):2903-2911. PubMed ID: 29608857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing.
    Lu Y; Lyu H; Richardson AG; Lucas TH; Kuzum D
    Sci Rep; 2016 Sep; 6():33526. PubMed ID: 27642117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.
    Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P
    J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene microelectrode arrays for neural activity detection.
    Du X; Wu L; Cheng J; Huang S; Cai Q; Jin Q; Zhao J
    J Biol Phys; 2015 Sep; 41(4):339-47. PubMed ID: 25712492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A fully transparent, flexible PEDOT:PSS-ITO-Ag-ITO based microelectrode array for ECoG recording.
    Yang W; Gong Y; Yao CY; Shrestha M; Jia Y; Qiu Z; Fan QH; Weber A; Li W
    Lab Chip; 2021 Mar; 21(6):1096-1108. PubMed ID: 33522526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of flexible microelectrode arrays for recording cortical surface field potentials.
    Myllymaa S; Myllymaa K; Korhonen H; Gureviciene I; Djupsund K; Tanila H; Lappalainen R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3200-3. PubMed ID: 19163387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.