BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32191936)

  • 1. Dynamics of water trapped in transition metal oxide-graphene nano-confinement.
    Tendong E; Dasgupta TS; Chakrabarti J
    J Phys Condens Matter; 2020 May; 32(32):. PubMed ID: 32191936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical Transitions of Supercooled Water in Graphene Oxide Nanopores: Influence of Surface Hydrophilicity.
    M R; Ayappa KG
    J Phys Chem B; 2020 Jun; 124(23):4805-4820. PubMed ID: 32401517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of surface hydrophilicity and hydration on the rotational relaxation of supercooled water on graphene oxide surfaces.
    M R; Ayappa KG
    Phys Chem Chem Phys; 2020 Jul; 22(28):16080-16095. PubMed ID: 32638750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of surface polarity on the structure and dynamics of water in nanoscale confinement.
    Romero-Vargas Castrillón S; Giovambattista N; Aksay IA; Debenedetti PG
    J Phys Chem B; 2009 Feb; 113(5):1438-46. PubMed ID: 19143545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the Dynamics of Water Confined between Graphene Oxide Surfaces with Janus Interfaces: A Molecular Dynamics Study.
    M R; Ayappa KG
    J Phys Chem B; 2019 Apr; 123(13):2978-2993. PubMed ID: 30860840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confined Water: Structure, Dynamics, and Thermodynamics.
    Chakraborty S; Kumar H; Dasgupta C; Maiti PK
    Acc Chem Res; 2017 Sep; 50(9):2139-2146. PubMed ID: 28809537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water.
    Foroutan M; Fatemi SM; Shokouh F
    J Mol Graph Model; 2016 May; 66():85-90. PubMed ID: 27041448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the effects of 2D confinement on hydrogen dynamics in water and ice adsorbed in graphene oxide sponges.
    Romanelli G; Senesi R; Zhang X; Loh KP; Andreani C
    Phys Chem Chem Phys; 2015 Dec; 17(47):31680-4. PubMed ID: 26556604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology of Water Flows Confined between Multilayer Graphene Walls.
    Li F; Korotkin IA; Karabasov SA
    Langmuir; 2020 May; 36(20):5633-5646. PubMed ID: 32370511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Square ice in graphene nanocapillaries.
    Algara-Siller G; Lehtinen O; Wang FC; Nair RR; Kaiser U; Wu HA; Geim AK; Grigorieva IV
    Nature; 2015 Mar; 519(7544):443-5. PubMed ID: 25810206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement.
    Yang L; Guo Y; Diao D
    Phys Chem Chem Phys; 2017 May; 19(21):14048-14054. PubMed ID: 28518189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulations of structural and dynamic anisotropy in nano-confined water between parallel graphite plates.
    Mosaddeghi H; Alavi S; Kowsari MH; Najafi B
    J Chem Phys; 2012 Nov; 137(18):184703. PubMed ID: 23163385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the interfacial dynamics of water sandwiched between static and free-standing fully flexible graphene sheets.
    Deshmukh SA; Kamath G; Sankaranarayanan SK
    Soft Matter; 2014 Jun; 10(23):4067-83. PubMed ID: 24845025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the extent of hydrophobicity on water organization and dynamics on 2D graphene oxide surfaces.
    M R; Ayappa KG
    Phys Chem Chem Phys; 2022 Jun; 24(24):14909-14923. PubMed ID: 35674363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation-based study to analyse the properties of entrapped water between gold and graphene 2D interfaces.
    Mishra S; Liu F; Shakthivel D; Rai B; Georgiev V
    Nanoscale Adv; 2024 Apr; 6(9):2371-2379. PubMed ID: 38694470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interlayer water regulates the bio-nano interface of a β-sheet protein stacking on graphene.
    Lv W; Xu G; Zhang H; Li X; Liu S; Niu H; Xu D; Wu R
    Sci Rep; 2015 Jan; 5():7572. PubMed ID: 25557857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-lattice relaxation time in water/graphene-oxide dispersion.
    De Thomasis G; Galante A; Fioravanti G; Ottaviano L; Alecci M; Profeta G
    J Chem Phys; 2023 Mar; 158(12):124709. PubMed ID: 37003763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation of the behaviour of water in nano-confined ionic liquid-water mixtures.
    Docampo-Álvarez B; Gómez-González V; Montes-Campos H; Otero-Mato JM; Méndez-Morales T; Cabeza O; Gallego LJ; Lynden-Bell RM; Ivaništšev VB; Fedorov MV; Varela LM
    J Phys Condens Matter; 2016 Nov; 28(46):464001. PubMed ID: 27623714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2019 Aug; 21(32):17640-17654. PubMed ID: 31364628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.