These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32192071)

  • 1. Comparison of Different Remote Sensing Methods for 3D Modeling of Small Rock Outcrops.
    Mikita T; Balková M; Bajer A; Cibulka M; Patočka Z
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32192071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States.
    Swetnam TL; Gillan JK; Sankey TT; McClaran MP; Nichols MH; Heilman P; McVay J
    Front Plant Sci; 2017; 8():2144. PubMed ID: 29379511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral pattern classification in lidar data for rock identification in outcrops.
    Campos Inocencio L; Veronez MR; Wohnrath Tognoli FM; de Souza MK; da Silva RM; Gonzaga L; Blum Silveira CL
    ScientificWorldJournal; 2014; 2014():539029. PubMed ID: 24701176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of Rock Joint Surfaces by Using Smartphone Structure from Motion (SfM) Photogrammetry.
    An P; Fang K; Jiang Q; Zhang H; Zhang Y
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33573128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Portable LiDAR-Based Method for Improvement of Grass Height Measurement Accuracy: Comparison with SfM Methods.
    Obanawa H; Yoshitoshi R; Watanabe N; Sakanoue S
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32858888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Rapid Method of the Rock Mass Surface Reconstruction for Surface Deformation Detection at Close Range.
    Hu Q; Ma C; Bai Y; He L; Tan J; Cai Q; Zeng J
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-Ground Vineyard Reconstruction Using a LiDAR-Based Automated System.
    Moreno H; Valero C; Bengochea-Guevara JM; Ribeiro Á; Garrido-Izard M; Andújar D
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rock outcrops reduce temperature-induced stress for tropical conifer by decoupling regional climate in the semiarid environment.
    Locosselli GM; Cardim RH; Ceccantini G
    Int J Biometeorol; 2016 May; 60(5):639-49. PubMed ID: 26362853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smartphone-Based Light Detection and Ranging for Remote Patient Evaluation and Monitoring.
    Bhandarkar AR; Bhandarkar S; Jarrah RM; Rosenman D; Bydon M
    Cureus; 2021 Aug; 13(8):e16886. PubMed ID: 34513461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Special Issue on "Terrestrial Laser Scanning": Editors' Notes.
    Rosell-Polo JR; Gregorio E; Llorens J
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31640146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Accuracy Comparison of Three Simultaneous Localization and Mapping (SLAM)-Based Indoor Mapping Technologies.
    Chen Y; Tang J; Jiang C; Zhu L; Lehtomäki M; Kaartinen H; Kaijaluoto R; Wang Y; Hyyppä J; Hyyppä H; Zhou H; Pei L; Chen R
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30257505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Humus soil as a critical driver of flora conversion on karst rock outcrops.
    Zhu X; Shen Y; He B; Zhao Z
    Sci Rep; 2017 Oct; 7(1):12611. PubMed ID: 28974749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rock Outcrops Redistribute Organic Carbon and Nutrients to Nearby Soil Patches in Three Karst Ecosystems in SW China.
    Wang D; Shen Y; Li Y; Huang J
    PLoS One; 2016; 11(8):e0160773. PubMed ID: 27509199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rock outcrops redistribute water to nearby soil patches in karst landscapes.
    Wang DJ; Shen YX; Huang J; Li YH
    Environ Sci Pollut Res Int; 2016 May; 23(9):8610-6. PubMed ID: 26797951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multispectral Light Detection and Ranging Technology and Applications: A Review.
    Takhtkeshha N; Mandlburger G; Remondino F; Hyyppä J
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Rock Outcrops Reveal Continuing Habitat Disturbance for an Endangered Australian Snake.
    Goldingay RL; Newell DA
    Conserv Biol; 2000 Dec; 14(6):1908-1912. PubMed ID: 35701925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid 3D ranging and velocity tracking system combining multi-view cameras and simple LiDAR.
    Radwell N; Selyem A; Mertens L; Edgar MP; Padgett MJ
    Sci Rep; 2019 Mar; 9(1):5241. PubMed ID: 30918273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smartphone LiDAR Data: A Case Study for Numerisation of Indoor Buildings in Railway Stations.
    Catharia O; Richard F; Vignoles H; Véron P; Aoussat A; Segonds F
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Depth Camera and Terrestrial Laser Scanner in Monitoring Structural Deflections.
    Maru MB; Lee D; Tola KD; Park S
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing Vehicle Profiling Accuracy of Handheld LiDAR Compared to Terrestrial Laser Scanning for Crash Scene Reconstruction.
    Desai J; Liu J; Hainje R; Oleksy R; Habib A; Bullock D
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.