These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 32192326)

  • 1. Reshaping Tumor Immune Microenvironment through Acidity-Responsive Nanoparticles Featured with CRISPR/Cas9-Mediated Programmed Death-Ligand 1 Attenuation and Chemotherapeutics-Induced Immunogenic Cell Death.
    Tu K; Deng H; Kong L; Wang Y; Yang T; Hu Q; Hu M; Yang C; Zhang Z
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16018-16030. PubMed ID: 32192326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy.
    Yang Q; Shi G; Chen X; Lin Y; Cheng L; Jiang Q; Yan X; Jiang M; Li Y; Zhang H; Wang H; Wang Y; Wang Q; Zhang Y; Liu Y; Su X; Dai L; Tang M; Li J; Zhang L; Qian Z; Yu D; Deng H
    Theranostics; 2020; 10(18):8382-8399. PubMed ID: 32724476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PD-L1 knockdown via hybrid micelle promotes paclitaxel induced Cancer-Immunity Cycle for melanoma treatment.
    Tang X; Rao J; Yin S; Wei J; Xia C; Li M; Mei L; Zhang Z; He Q
    Eur J Pharm Sci; 2019 Jan; 127():161-174. PubMed ID: 30366077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The synergistic antitumor activity of 3-(2-nitrophenyl) propionic acid-paclitaxel nanoparticles (NPPA-PTX NPs) and anti-PD-L1 antibody inducing immunogenic cell death.
    Duan XC; Peng LY; Yao X; Xu MQ; Li H; Zhang SQ; Li ZY; Wang JR; Feng ZH; Wang GX; Liao A; Chen Y; Zhang X
    Drug Deliv; 2021 Dec; 28(1):800-813. PubMed ID: 33866918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Locking Nanoparticles Disrupt the PD-1/PD-L1 Pathway for Efficient Cancer Immunotherapy.
    Zhang Z; Wang Q; Liu Q; Zheng Y; Zheng C; Yi K; Zhao Y; Gu Y; Wang Y; Wang C; Zhao X; Shi L; Kang C; Liu Y
    Adv Mater; 2019 Dec; 31(51):e1905751. PubMed ID: 31709671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stearyl polyethylenimine complexed with plasmids as the core of human serum albumin nanoparticles noncovalently bound to CRISPR/Cas9 plasmids or siRNA for disrupting or silencing PD-L1 expression for immunotherapy.
    Cheng WJ; Chen LC; Ho HO; Lin HL; Sheu MT
    Int J Nanomedicine; 2018; 13():7079-7094. PubMed ID: 30464460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic Antitumor Effect on Bladder Cancer by Rational Combination of Programmed Cell Death 1 Blockade and CRISPR-Cas9-Mediated Long Non-Coding RNA Urothelial Carcinoma Associated 1 Knockout.
    Zhen S; Lu J; Chen W; Zhao L; Li X
    Hum Gene Ther; 2018 Dec; 29(12):1352-1363. PubMed ID: 30457360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lymphopenic condition enhanced the antitumor immunity of PD-1-knockout T cells mediated by CRISPR/Cas9 system in malignant melanoma.
    Yang Z; Wu H; Lin Q; Wang X; Kang S
    Immunol Lett; 2022 Oct; 250():15-22. PubMed ID: 36174769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoenabled Modulation of Acidic Tumor Microenvironment Reverses Anergy of Infiltrating T Cells and Potentiates Anti-PD-1 Therapy.
    Zhang YX; Zhao YY; Shen J; Sun X; Liu Y; Liu H; Wang Y; Wang J
    Nano Lett; 2019 May; 19(5):2774-2783. PubMed ID: 30943039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reprogramming the Tumor Microenvironment through Second-Near-Infrared-Window Photothermal Genome Editing of PD-L1 Mediated by Supramolecular Gold Nanorods for Enhanced Cancer Immunotherapy.
    Tang H; Xu X; Chen Y; Xin H; Wan T; Li B; Pan H; Li D; Ping Y
    Adv Mater; 2021 Mar; 33(12):e2006003. PubMed ID: 33538047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel calreticulin-nanoparticle in combination with focused ultrasound induces immunogenic cell death in melanoma to enhance antitumor immunity.
    Sethuraman SN; Singh MP; Patil G; Li S; Fiering S; Hoopes PJ; Guha C; Malayer J; Ranjan A
    Theranostics; 2020; 10(8):3397-3412. PubMed ID: 32206098
    [No Abstract]   [Full Text] [Related]  

  • 12. Yeast-derived nanoparticles remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth.
    Xu J; Ma Q; Zhang Y; Fei Z; Sun Y; Fan Q; Liu B; Bai J; Yu Y; Chu J; Chen J; Wang C
    Nat Commun; 2022 Jan; 13(1):110. PubMed ID: 35013252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer.
    Cheng N; Watkins-Schulz R; Junkins RD; David CN; Johnson BM; Montgomery SA; Peine KJ; Darr DB; Yuan H; McKinnon KP; Liu Q; Miao L; Huang L; Bachelder EM; Ainslie KM; Ting JP
    JCI Insight; 2018 Nov; 3(22):. PubMed ID: 30429378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HSP70-Promoter-Driven CRISPR/Cas9 System Activated by Reactive Oxygen Species for Multifaceted Anticancer Immune Response and Potentiated Immunotherapy.
    Zhao L; Li D; Zhang Y; Huang Q; Zhang Z; Chen C; Xu CF; Chu X; Zhang Y; Yang X
    ACS Nano; 2022 Sep; 16(9):13821-13833. PubMed ID: 35993350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cascade-Responsive Hierarchical Nanosystems for Multisite Specific Drug Exposure and Boosted Chemoimmunotherapy.
    Zhang J; Zhang Y; Zhao B; Lv M; Chen E; Zhao C; Jiang L; Qian H; Huang D; Zhong Y; Chen W
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58319-58328. PubMed ID: 34855343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulating the immunosuppressive tumor microenvironment to enhance breast cancer immunotherapy using pH-responsive hybrid membrane-coated nanoparticles.
    Gong C; Yu X; Zhang W; Han L; Wang R; Wang Y; Gao S; Yuan Y
    J Nanobiotechnology; 2021 Feb; 19(1):58. PubMed ID: 33632231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer Cell Membrane Camouflaged Mesoporous Silica Nanoparticles Combined with Immune Checkpoint Blockade for Regulating Tumor Microenvironment and Enhancing Antitumor Therapy.
    Zhao P; Qiu L; Zhou S; Li L; Qian Z; Zhang H
    Int J Nanomedicine; 2021; 16():2107-2121. PubMed ID: 33737808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A carrier-free multiplexed gene editing system applicable for suspension cells.
    Ju A; Lee SW; Lee YE; Han KC; Kim JC; Shin SC; Park HJ; EunKyeong Kim E; Hong S; Jang M
    Biomaterials; 2019 Oct; 217():119298. PubMed ID: 31280073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Three-in-One Immunotherapy Nanoweapon via Cascade-Amplifying Cancer-Immunity Cycle against Tumor Metastasis, Relapse, and Postsurgical Regrowth.
    Li Q; Zhang D; Zhang J; Jiang Y; Song A; Li Z; Luan Y
    Nano Lett; 2019 Sep; 19(9):6647-6657. PubMed ID: 31409072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reprogramming the T cell response to cancer by simultaneous, nanoparticle-mediated PD-L1 inhibition and immunogenic cell death.
    Phung CD; Nguyen HT; Choi JY; Pham TT; Acharya S; Timilshina M; Chang JH; Kim JH; Jeong JH; Ku SK; Choi HG; Yong CS; Kim JO
    J Control Release; 2019 Dec; 315():126-138. PubMed ID: 31672625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.