These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32192346)

  • 1.
    Zhou Y; Yang S; Guo J; Dong H; Yin K; Huang WT; Yang R
    Anal Chem; 2020 Apr; 92(8):5787-5794. PubMed ID: 32192346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Engineering of Hypoxia and Acidic pH Dual-Stimuli-Responsive Intelligent Fluorescent Nanoprobe for Precise Tumor Imaging.
    Chen S; Chen M; Yang J; Zeng X; Zhou Y; Yang S; Yang R; Yuan Q; Zheng J
    Small; 2021 Jul; 17(28):e2100243. PubMed ID: 34117822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Azo-Based Hypoxia-Responsive Self-Assembly Near-Infrared Fluorescent Nanoprobe for In Vivo Real-Time Bioimaging of Tumors.
    Liu W; Yao X; Zhu W; Wang J; Zhou F; Qian X; Tiemuer A; Yang S; Wang HY; Liu Y
    ACS Appl Bio Mater; 2021 Mar; 4(3):2752-2758. PubMed ID: 35014314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Azo-based near-infrared fluorescent theranostic probe for tracking hypoxia-activated cancer chemotherapy in vivo.
    Ding N; Li Z; Tian X; Zhang J; Guo K; Wang P
    Chem Commun (Camb); 2019 Oct; 55(87):13172-13175. PubMed ID: 31620737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoplasmic Protein-Powered In Situ Fluorescence Amplification for Intracellular Assay of Low-Abundance Analyte.
    Zhou Y; Yang S; Xiao Y; Zou Z; Qing Z; Liu J; Yang R
    Anal Chem; 2019 Dec; 91(23):15179-15186. PubMed ID: 31713419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Strategy for Validating the Existence and Mechanism of the "Gut-Liver Axis" in Vivo by a Hypoxia-Sensitive NIR Fluorescent Probe.
    Tian Y; Li Y; Wang WX; Jiang WL; Fei J; Li CY
    Anal Chem; 2020 Mar; 92(6):4244-4250. PubMed ID: 32066231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a red-light emission hypoxia-sensitive two-photon fluorescent probe for in vivo nitroreductase imaging.
    Gebremedhin KH; Li Y; Yao Q; Xiao M; Gao F; Fan J; Du J; Long S; Peng X
    J Mater Chem B; 2019 Jan; 7(3):408-414. PubMed ID: 32254728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A turn-on fluorescent probe for tumor hypoxia imaging in living cells.
    Cai Q; Yu T; Zhu W; Xu Y; Qian X
    Chem Commun (Camb); 2015 Oct; 51(79):14739-41. PubMed ID: 26295073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Noncovalent Fluorescence Turn-on Strategy for Hypoxia Imaging.
    Geng WC; Jia S; Zheng Z; Li Z; Ding D; Guo DS
    Angew Chem Int Ed Engl; 2019 Feb; 58(8):2377-2381. PubMed ID: 30628146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent activatable gadofullerene nanoprobes as NIR-MR dual-modal in vivo imaging contrast agent.
    Li C; Huang H; Cui R; Li J; Guo X; Yao H; Liu B; Xu B; Li Y; Liu S; Dong J; Xing G; Sun B
    Colloids Surf B Biointerfaces; 2018 Nov; 171():159-166. PubMed ID: 30029098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-Infrared Fluorescent Probes for Hypoxia Detection via Joint Regulated Enzymes: Design, Synthesis, and Application in Living Cells and Mice.
    Tian X; Li Z; Sun Y; Wang P; Ma H
    Anal Chem; 2018 Nov; 90(22):13759-13766. PubMed ID: 30373362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly β-cyclodextrin/TPdye nanomicelle-based two-photon nanoprobe for caspase-3 activation imaging in live cells and tissues.
    Yan H; He L; Zhao W; Li J; Xiao Y; Yang R; Tan W
    Anal Chem; 2014 Nov; 86(22):11440-50. PubMed ID: 25347212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Simple, pH-Activatable Fluorescent Aptamer Probe with Ultralow Background for Bispecific Tumor Imaging.
    Shi H; Lei Y; Ge J; He X; Cui W; Ye X; Liu J; Wang K
    Anal Chem; 2019 Jul; 91(14):9154-9160. PubMed ID: 31185714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxia-sensitive fluorescent probes for in vivo real-time fluorescence imaging of acute ischemia.
    Kiyose K; Hanaoka K; Oushiki D; Nakamura T; Kajimura M; Suematsu M; Nishimatsu H; Yamane T; Terai T; Hirata Y; Nagano T
    J Am Chem Soc; 2010 Nov; 132(45):15846-8. PubMed ID: 20979363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor-Activatable Clinical Nanoprobe for Cancer Imaging.
    Reichel D; Tripathi M; Butte P; Saouaf R; Perez JM
    Nanotheranostics; 2019; 3(2):196-211. PubMed ID: 31183314
    [No Abstract]   [Full Text] [Related]  

  • 16. Highly Sensitive D-A-D-Type Near-Infrared Fluorescent Probe for Nitric Oxide Real-Time Imaging in Inflammatory Bowel Disease.
    Liu S; Zhu Y; Wu P; Xiong H
    Anal Chem; 2021 Mar; 93(11):4975-4983. PubMed ID: 33691397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of ATP-Powered Photosensitizer for Targeted Recycling Activatable Imaging of MicroRNA and Controllable Cascade Amplification Photodynamic Therapy.
    Shen Y; Wu T; Tian Q; Mao Y; Hu J; Luo X; Ye Y; Chen HY; Xu JJ
    Anal Chem; 2019 Jun; 91(12):7879-7886. PubMed ID: 31083980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activatable NIR Fluorescence/MRI Bimodal Probes for in Vivo Imaging by Enzyme-Mediated Fluorogenic Reaction and Self-Assembly.
    Yan R; Hu Y; Liu F; Wei S; Fang D; Shuhendler AJ; Liu H; Chen HY; Ye D
    J Am Chem Soc; 2019 Jul; 141(26):10331-10341. PubMed ID: 31244188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha-MSH Targeted Liposomal Nanoparticle for Imaging in Inflammatory Bowel Disease (IBD).
    Peñate-Medina T; Damoah C; Benezra M; Will O; Kairemo K; Humbert J; Sebens S; Peñate-Medina O
    Curr Pharm Des; 2020; 26(31):3840-3846. PubMed ID: 32718282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer-based activatable optical probes for tumor fluorescence and photoacoustic imaging.
    Zhen X; Jiang X
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Mar; 12(2):e1593. PubMed ID: 31580007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.