BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

614 related articles for article (PubMed ID: 32192916)

  • 1. Redox basis of exercise physiology.
    Margaritelis NV; Paschalis V; Theodorou AA; Kyparos A; Nikolaidis MG
    Redox Biol; 2020 Aug; 35():101499. PubMed ID: 32192916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of vitamin C or protandim on skeletal muscle adaptation to exercise.
    Bruns DR; Ehrlicher SE; Khademi S; Biela LM; Peelor FF; Miller BF; Hamilton KL
    J Appl Physiol (1985); 2018 Aug; 125(2):661-671. PubMed ID: 29856263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle redox signalling pathways in exercise. Role of antioxidants.
    Mason SA; Morrison D; McConell GK; Wadley GD
    Free Radic Biol Med; 2016 Sep; 98():29-45. PubMed ID: 26912034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The roles of microRNA in redox metabolism and exercise-mediated adaptation.
    Torma F; Gombos Z; Jokai M; Berkes I; Takeda M; Mimura T; Radak Z; Gyori F
    J Sport Health Sci; 2020 Sep; 9(5):405-414. PubMed ID: 32780693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary Antioxidants as Modifiers of Physiologic Adaptations to Exercise.
    Mankowski RT; Anton SD; Buford TW; Leeuwenburgh C
    Med Sci Sports Exerc; 2015 Sep; 47(9):1857-68. PubMed ID: 25606815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of mitochondria in redox signaling of muscle homeostasis.
    Ji LL; Yeo D; Kang C; Zhang T
    J Sport Health Sci; 2020 Sep; 9(5):386-393. PubMed ID: 32780692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox signaling in skeletal muscle: role of aging and exercise.
    Ji LL
    Adv Physiol Educ; 2015 Dec; 39(4):352-9. PubMed ID: 26628659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronology of UPR activation in skeletal muscle adaptations to chronic contractile activity.
    Memme JM; Oliveira AN; Hood DA
    Am J Physiol Cell Physiol; 2016 Jun; 310(11):C1024-36. PubMed ID: 27122157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species and redox-regulation of skeletal muscle adaptations to exercise.
    Jackson MJ
    Philos Trans R Soc Lond B Biol Sci; 2005 Dec; 360(1464):2285-91. PubMed ID: 16321798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the autophagy system during chronic contractile activity-induced muscle adaptations.
    Kim Y; Hood DA
    Physiol Rep; 2017 Jul; 5(14):. PubMed ID: 28720712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aging is not a barrier to muscle and redox adaptations: applying the repeated eccentric exercise model.
    Nikolaidis MG; Kyparos A; Spanou C; Paschalis V; Theodorou AA; Panayiotou G; Grivas GV; Zafeiridis A; Dipla K; Vrabas IS
    Exp Gerontol; 2013 Aug; 48(8):734-43. PubMed ID: 23628501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Basis of Exercise-Induced Skeletal Muscle Mitochondrial Biogenesis: Historical Advances, Current Knowledge, and Future Challenges.
    Perry CGR; Hawley JA
    Cold Spring Harb Perspect Med; 2018 Sep; 8(9):. PubMed ID: 28507194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle.
    Wang L; Mascher H; Psilander N; Blomstrand E; Sahlin K
    J Appl Physiol (1985); 2011 Nov; 111(5):1335-44. PubMed ID: 21836044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice.
    Merry TL; Ristow M
    J Physiol; 2016 Sep; 594(18):5195-207. PubMed ID: 27094017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle.
    Fiorenza M; Gunnarsson TP; Hostrup M; Iaia FM; Schena F; Pilegaard H; Bangsbo J
    J Physiol; 2018 Jul; 596(14):2823-2840. PubMed ID: 29727016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell signalling and bone turnover: implications for training adaptation.
    Hammond KM; Sale C; Fraser W; Tang J; Shepherd SO; Strauss JA; Close GL; Cocks M; Louis J; Pugh J; Stewart C; Sharples AP; Morton JP
    J Physiol; 2019 Sep; 597(18):4779-4796. PubMed ID: 31364768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations.
    Cobley JN; McHardy H; Morton JP; Nikolaidis MG; Close GL
    Free Radic Biol Med; 2015 Jul; 84():65-76. PubMed ID: 25841784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training?
    Gomez-Cabrera MC; Salvador-Pascual A; Cabo H; Ferrando B; ViƱa J
    Free Radic Biol Med; 2015 Sep; 86():37-46. PubMed ID: 25889822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perilipin 5 is dispensable for normal substrate metabolism and in the adaptation of skeletal muscle to exercise training.
    Mohktar RA; Montgomery MK; Murphy RM; Watt MJ
    Am J Physiol Endocrinol Metab; 2016 Jul; 311(1):E128-37. PubMed ID: 27189934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity of skeletal muscle mitochondria in response to contractile activity.
    Adhihetty PJ; Irrcher I; Joseph AM; Ljubicic V; Hood DA
    Exp Physiol; 2003 Jan; 88(1):99-107. PubMed ID: 12525859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.