These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32193086)

  • 1. Automated detection and classification of diabetes disease based on Bangladesh demographic and health survey data, 2011 using machine learning approach.
    Islam MM; Rahman MJ; Chandra Roy D; Maniruzzaman M
    Diabetes Metab Syndr; 2020; 14(3):217-219. PubMed ID: 32193086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diabetes disease detection and classification on Indian demographic and health survey data using machine learning methods.
    Thotad PN; Bharamagoudar GR; Anami BS
    Diabetes Metab Syndr; 2023 Jan; 17(1):102690. PubMed ID: 36527769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate Diabetes Risk Stratification Using Machine Learning: Role of Missing Value and Outliers.
    Maniruzzaman M; Rahman MJ; Al-MehediHasan M; Suri HS; Abedin MM; El-Baz A; Suri JS
    J Med Syst; 2018 Apr; 42(5):92. PubMed ID: 29637403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.
    Dinh A; Miertschin S; Young A; Mohanty SD
    BMC Med Inform Decis Mak; 2019 Nov; 19(1):211. PubMed ID: 31694707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning models for prediction of double and triple burdens of non-communicable diseases in Bangladesh.
    Al-Zubayer MA; Alam K; Shanto HH; Maniruzzaman M; Majumder UK; Ahammed B
    J Biosoc Sci; 2024 May; 56(3):426-444. PubMed ID: 38505939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning algorithms for predicting malnutrition among under-five children in Bangladesh.
    Talukder A; Ahammed B
    Nutrition; 2020 Oct; 78():110861. PubMed ID: 32592978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting risks of low birth weight in Bangladesh with machine learning.
    Islam Pollob SMA; Abedin MM; Islam MT; Islam MM; Maniruzzaman M
    PLoS One; 2022; 17(5):e0267190. PubMed ID: 35617201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early Diabetes Prediction: A Comparative Study Using Machine Learning Techniques.
    Poly TN; Islam MM; Li YJ
    Stud Health Technol Inform; 2022 Jun; 295():409-413. PubMed ID: 35773898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms.
    Maniruzzaman M; Jahanur Rahman M; Ahammed B; Abedin MM; Suri HS; Biswas M; El-Baz A; Bangeas P; Tsoulfas G; Suri JS
    Comput Methods Programs Biomed; 2019 Jul; 176():173-193. PubMed ID: 31200905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing risk factors for malnutrition among women in Bangladesh and forecasting malnutrition using machine learning approaches.
    Turjo EA; Rahman MH
    BMC Nutr; 2024 Feb; 10(1):22. PubMed ID: 38303093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning approach for predicting cardiovascular disease in Bangladesh: evidence from a cross-sectional study in 2023.
    Hossain S; Hasan MK; Faruk MO; Aktar N; Hossain R; Hossain K
    BMC Cardiovasc Disord; 2024 Apr; 24(1):214. PubMed ID: 38632519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive models for diabetes mellitus using machine learning techniques.
    Lai H; Huang H; Keshavjee K; Guergachi A; Gao X
    BMC Endocr Disord; 2019 Oct; 19(1):101. PubMed ID: 31615566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated detection of diabetic retinopathy using machine learning classifiers.
    Alabdulwahhab KM; Sami W; Mehmood T; Meo SA; Alasbali TA; Alwadani FA
    Eur Rev Med Pharmacol Sci; 2021 Jan; 25(2):583-590. PubMed ID: 33577010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A soft computing approach for diabetes disease classification.
    Nilashi M; Bin Ibrahim O; Mardani A; Ahani A; Jusoh A
    Health Informatics J; 2018 Dec; 24(4):379-393. PubMed ID: 30376769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.
    Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK
    Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model and variable selection using machine learning methods with applications to childhood stunting in Bangladesh.
    Khan JR; Tomal JH; Raheem E
    Inform Health Soc Care; 2021 Dec; 46(4):425-442. PubMed ID: 33851897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning algorithm for characterizing risks of hypertension, at an early stage in Bangladesh.
    Islam MM; Rahman MJ; Chandra Roy D; Tawabunnahar M; Jahan R; Ahmed NAMF; Maniruzzaman M
    Diabetes Metab Syndr; 2021; 15(3):877-884. PubMed ID: 33892404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm.
    Maniruzzaman M; Kumar N; Menhazul Abedin M; Shaykhul Islam M; Suri HS; El-Baz AS; Suri JS
    Comput Methods Programs Biomed; 2017 Dec; 152():23-34. PubMed ID: 29054258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroencephalography (EEG) eye state classification using learning vector quantization and bagged trees.
    Nilashi M; Abumalloh RA; Ahmadi H; Samad S; Alghamdi A; Alrizq M; Alyami S; Nayer FK
    Heliyon; 2023 Apr; 9(4):e15258. PubMed ID: 37101630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.