These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32193110)

  • 1. Cytotoxic effects in transformed and non-transformed human breast cell lines after exposure to silver nanoparticles in combination with selected aluminium compounds, parabens or phthalates.
    Roszak J; Smok-Pieniążek A; Spryszyńska S; Kowalczyk K; Domeradzka-Gajda K; Świercz R; Grobelny J; Tomaszewska E; Ranoszek-Soliwoda K; Celichowski G; Cieślak M; Puchowicz D; Stępnik M
    J Hazard Mater; 2020 Jun; 392():122442. PubMed ID: 32193110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotoxic effects in transformed and non-transformed human breast cell lines after exposure to silver nanoparticles in combination with aluminium chloride, butylparaben or di-n-butylphthalate.
    Roszak J; Domeradzka-Gajda K; Smok-Pieniążek A; Kozajda A; Spryszyńska S; Grobelny J; Tomaszewska E; Ranoszek-Soliwoda K; Cieślak M; Puchowicz D; Stępnik M
    Toxicol In Vitro; 2017 Dec; 45(Pt 1):181-193. PubMed ID: 28893613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory effect of silver nanoparticles on proliferation of estrogen-dependent MCF-7/BUS human breast cancer cells induced by butyl paraben or di-n-butyl phthalate.
    Roszak J; Smok-Pieniążek A; Domeradzka-Gajda K; Grobelny J; Tomaszewska E; Ranoszek-Soliwoda K; Celichowski G; Stępnik M
    Toxicol Appl Pharmacol; 2017 Dec; 337():12-21. PubMed ID: 29074358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined effect of silver nanoparticles and aluminium chloride, butylparaben or diethylphthalate on the malignancy of MDA-MB-231 breast cancer cells and tumor-specific immune responses of human macrophages and monocyte-derived dendritic cells.
    Roszak J; Smok-Pieniążek A; Jeżak K; Domeradzka-Gajda K; Grobelny J; Tomaszewska E; Ranoszek-Soliwoda K; Celichowski G; Stępnik M
    Toxicol In Vitro; 2020 Jun; 65():104774. PubMed ID: 31954849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential response of MCF7, MDA-MB-231, and MCF 10A cells to hyperthermia, silver nanoparticles and silver nanoparticle-induced photothermal therapy.
    Thompson EA; Graham E; MacNeill CM; Young M; Donati G; Wailes EM; Jones BT; Levi-Polyachenko NH
    Int J Hyperthermia; 2014 Aug; 30(5):312-23. PubMed ID: 25144821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effect of methyl-, butyl- and propylparaben and 17β-estradiol on selected cell cycle and apoptosis gene and protein expression in MCF-7 breast cancer cells and MCF-10A non-malignant cells.
    Wróbel AM; Gregoraszczuk EŁ
    J Appl Toxicol; 2014 Sep; 34(9):1041-50. PubMed ID: 24481588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of silver nanoparticles on human cells: effect of particle size.
    Liu W; Wu Y; Wang C; Li HC; Wang T; Liao CY; Cui L; Zhou QF; Yan B; Jiang GB
    Nanotoxicology; 2010 Sep; 4(3):319-30. PubMed ID: 20795913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of Silymarin and Vitamin E Protective Effects on Silver Nanoparticle Toxicity on Mice Liver Primary Cell Culture.
    Faedmaleki F; Shirazi FH; Ejtemaeimehr S; Anjarani S; Salarian AA; Ahmadi Ashtiani H; Rastegar H
    Acta Med Iran; 2016 Feb; 54(2):85-95. PubMed ID: 26997594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action.
    van der Zande M; Undas AK; Kramer E; Monopoli MP; Peters RJ; Garry D; Antunes Fernandes EC; Hendriksen PJ; Marvin HJ; Peijnenburg AA; Bouwmeester H
    Nanotoxicology; 2016 Dec; 10(10):1431-1441. PubMed ID: 27597447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of cytotoxicity and genotoxicity effects of silver nanoparticles on human cervix and breast cancer cell lines.
    Juarez-Moreno K; Gonzalez EB; Girón-Vazquez N; Chávez-Santoscoy RA; Mota-Morales JD; Perez-Mozqueda LL; Garcia-Garcia MR; Pestryakov A; Bogdanchikova N
    Hum Exp Toxicol; 2017 Sep; 36(9):931-948. PubMed ID: 27815378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soybean agglutinin-conjugated silver nanoparticles nanocarriers in the treatment of breast cancer cells.
    Casañas Pimentel RG; Robles Botero V; San Martín Martínez E; Gómez García C; Hinestroza JP
    J Biomater Sci Polym Ed; 2016; 27(3):218-34. PubMed ID: 26540350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action of methyl-, propyl- and butylparaben on GPR30 gene and protein expression, cAMP levels and activation of ERK1/2 and PI3K/Akt signaling pathways in MCF-7 breast cancer cells and MCF-10A non-transformed breast epithelial cells.
    Wróbel AM; Gregoraszczuk EŁ
    Toxicol Lett; 2015 Oct; 238(2):110-6. PubMed ID: 26253279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on the in vitro percutaneous absorption of silver nanoparticles in combination with aluminum chloride, methyl paraben or di-n-butyl phthalate.
    Domeradzka-Gajda K; Nocuń M; Roszak J; Janasik B; Quarles CD; Wąsowicz W; Grobelny J; Tomaszewska E; Celichowski G; Ranoszek-Soliwoda K; Cieślak M; Puchowicz D; Gonzalez JJ; Russo RE; Stępnik M
    Toxicol Lett; 2017 Apr; 272():38-48. PubMed ID: 28315385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of glutamine deprivation on oxidative stress and cell survival in breast cell lines.
    Gwangwa MV; Joubert AM; Visagie MH
    Biol Res; 2019 Mar; 52(1):15. PubMed ID: 30917872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a silver nanomaterial on cellular organelles and time course of oxidative stress in a fish cell line (PLHC-1).
    Bermejo-Nogales A; Fernández M; Fernández-Cruz ML; Navas JM
    Comp Biochem Physiol C Toxicol Pharmacol; 2016 Dec; 190():54-65. PubMed ID: 27544301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of HSPA1A promoter-driven luciferase reporter gene assays in human cells for assessing the oxidative damage induced by silver nanoparticles.
    Xin L; Wang J; Zhang LW; Che B; Dong G; Fan G; Cheng K
    Toxicol Appl Pharmacol; 2016 Aug; 304():9-17. PubMed ID: 27211842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces oxidative stress, DNA strand breaks, and poly(ADP-ribose) polymerase-1 activation in human breast carcinoma cell lines.
    Lin PH; Lin CH; Huang CC; Chuang MC; Lin P
    Toxicol Lett; 2007 Aug; 172(3):146-58. PubMed ID: 17669606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic effects of parabens and plastic nanoparticles on proliferation of human breast cancer cells.
    Roje Ž; Ilić K; Galić E; Pavičić I; Turčić P; Stanec Z; Vrček IV
    Arh Hig Rada Toksikol; 2019 Dec; 70(4):310-314. PubMed ID: 32623858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicological evaluation of representative silver nanoparticles in macrophages and epithelial cells.
    Nguyen KC; Richards L; Massarsky A; Moon TW; Tayabali AF
    Toxicol In Vitro; 2016 Jun; 33():163-73. PubMed ID: 26975774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-dose doxorubicin with carotenoids selectively alters redox status and upregulates oxidative stress-mediated apoptosis in breast cancer cells.
    Vijay K; Sowmya PR; Arathi BP; Shilpa S; Shwetha HJ; Raju M; Baskaran V; Lakshminarayana R
    Food Chem Toxicol; 2018 Aug; 118():675-690. PubMed ID: 29920287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.