These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32193111)

  • 1. In-situ debromination mechanism based on self-activation and catalysis of Ca(OH)
    Gao R; Liu B; Zhan L; Guo J; Zhang J; Xu Z
    J Hazard Mater; 2020 Jun; 392():122447. PubMed ID: 32193111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic effect and mechanism of coexisting copper on conversion of organics during pyrolysis of waste printed circuit boards.
    Gao R; Liu B; Zhan L; Guo J; Zhang J; Xu Z
    J Hazard Mater; 2021 Feb; 403():123465. PubMed ID: 32846256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis treatment of nonmetal fraction of waste printed circuit boards: Focusing on the fate of bromine.
    Xiong J; Yu S; Wu D; Lü X; Tang J; Wu W; Yao Z
    Waste Manag Res; 2020 Nov; 38(11):1251-1258. PubMed ID: 31902310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combating toxic emissions from thermal recycling of polymeric fractions laden with novel brominated flame retardants (NBFRs) in e-waste: an in-situ approach using Ca(OH)
    Kuttiyathil MS; Ali L; Ahmed OH; Altarawneh M
    Environ Sci Pollut Res Int; 2023 Sep; 30(43):98300-98313. PubMed ID: 37606772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic insights into catalysis of in-situ iron on pyrolysis of waste printed circuit boards: Comparative study of kinetics, products, and reaction mechanism.
    Liu J; Wang H; Zhang W; Wang T; Mei M; Chen S; Li J
    J Hazard Mater; 2022 Jun; 431():128612. PubMed ID: 35259695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the transference rules for bromine in waste printed circuit boards during microwave-induced pyrolysis.
    Sun J; Wang W; Liu Z; Ma C
    J Air Waste Manag Assoc; 2011 May; 61(5):535-42. PubMed ID: 21608493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Debromination Efficiency through Introducing Water Vapor Atmosphere to Overcome Limitations of Conventional Pyrolysis.
    Chen Z; Zhan L; Xu Z
    Environ Sci Technol; 2023 Dec; 57(49):20941-20950. PubMed ID: 38032848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach for determining the accurate debromination time in the ball-milling process of nonmetallic particles from waste printed circuit boards by computation.
    Qin B; Lin M; Chen X; Xu Z; Fu Y; Hu J; Ruan J
    J Hazard Mater; 2021 May; 410():124611. PubMed ID: 33246811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel approach of accurately rationing adsorbent for capturing pollutants via chemistry calculation: Rationing the mass of CaCO
    Qin B; Lin M; Yao Z; Zhu J; Ruan J; Tang Y; Qiu R
    J Hazard Mater; 2020 Jul; 393():122410. PubMed ID: 32120221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation on the formation mechanism of main products from TBBPA pyrolysis using DFT method.
    Mu X; Wang Y; Huang J; Lan L; Wang H; Xu W; Li X
    Chemosphere; 2023 Apr; 320():138045. PubMed ID: 36736836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic pyrolysis of waste printed circuit boards to organic bromine: reaction mechanism and comprehensive recovery.
    Li C; Liu C; Xia H; Zhang L; Liu D; Shu B
    Environ Sci Pollut Res Int; 2023 Oct; 30(49):108288-108300. PubMed ID: 37743446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrolysis and utilization of nonmetal materials in waste printed circuit boards: Debromination pyrolysis, temperature-controlled condensation, and synthesis of oil-based resin.
    Gao R; Xu Z
    J Hazard Mater; 2019 Feb; 364():1-10. PubMed ID: 30336331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Debromination with Bromine Recovery from Pyrolysis of Waste Printed Circuit Boards Offers Economic and Environmental Benefits.
    Liu J; Zhan L; Xu Z
    Environ Sci Technol; 2023 Mar; 57(9):3496-3504. PubMed ID: 36794988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into brominated epoxy resin type WPCBs pyrolysis mechanisms: Integrated experimental and DFT simulation studies.
    Wu Y; Tao R; Li B; Hu C; Zhang W; Yuan H; Gu J; Chen Y
    Sci Total Environ; 2024 Feb; 912():169610. PubMed ID: 38157909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of additives on migration and transformation of gaseous pollutants in the vacuum pyrolysis process of waste printed circuit boards.
    Xie Y; Sun S; Liu J; Lin W; Chen N; Ye M
    Waste Manag Res; 2017 Feb; 35(2):190-199. PubMed ID: 27539190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research of the thermal decomposition mechanism and pyrolysis pathways from macromonomer to small molecule of waste printed circuit board.
    Gao R; Zhan L; Guo J; Xu Z
    J Hazard Mater; 2020 Feb; 383():121234. PubMed ID: 31563045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fate of bromine during microwave-assisted pyrolysis of waste printed circuit boards.
    Zhang Y; Zhou C; Liu Y; Qu J; Ali Siyal A; Yao B; Dai J; Liu C; Chao L; Chen L; Wang L
    Waste Manag; 2024 Jan; 173():160-171. PubMed ID: 37992535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-pyrolysis of waste printed circuit boards with iron compounds for Br-fixing and material recovery.
    Chen W; Shu Y; Li Y; Chen Y; Wei J
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):64642-64651. PubMed ID: 34318418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic pyrolysis characteristics of scrap printed circuit boards by TG-FTIR.
    Zhao C; Zhang X; Shi L
    Waste Manag; 2017 Mar; 61():354-361. PubMed ID: 28024895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of chemical pretreatment on pyrolysis of non-metallic fraction recycled from waste printed circuit boards.
    Shen Y
    Waste Manag; 2018 Jun; 76():537-543. PubMed ID: 29477651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.