These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 32193479)
1. Measurement and modelling of deep sea sediment plumes and implications for deep sea mining. Spearman J; Taylor J; Crossouard N; Cooper A; Turnbull M; Manning A; Lee M; Murton B Sci Rep; 2020 Mar; 10(1):5075. PubMed ID: 32193479 [TBL] [Abstract][Full Text] [Related]
2. An in situ study of abyssal turbidity-current sediment plumes generated by a deep seabed polymetallic nodule mining preprototype collector vehicle. Muñoz-Royo C; Ouillon R; El Mousadik S; Alford MH; Peacock T Sci Adv; 2022 Sep; 8(38):eabn1219. PubMed ID: 36129971 [TBL] [Abstract][Full Text] [Related]
3. Stokes settling and particle-laden plumes: implications for deep-sea mining and volcanic eruption plumes. Mingotti N; Woods AW Philos Trans A Math Phys Eng Sci; 2020 Sep; 378(2179):20190532. PubMed ID: 32762438 [TBL] [Abstract][Full Text] [Related]
4. Development of physical modelling tools in support of risk scenarios: A new framework focused on deep-sea mining. Lopes CL; Bastos L; Caetano M; Martins I; Santos MM; Iglesias I Sci Total Environ; 2019 Feb; 650(Pt 2):2294-2306. PubMed ID: 30292122 [TBL] [Abstract][Full Text] [Related]
5. Impact of remotely generated eddies on plume dispersion at abyssal mining sites in the Pacific. Aleynik D; Inall ME; Dale A; Vink A Sci Rep; 2017 Dec; 7(1):16959. PubMed ID: 29208985 [TBL] [Abstract][Full Text] [Related]
6. Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining. Mestre NC; Rocha TL; Canals M; Cardoso C; Danovaro R; Dell'Anno A; Gambi C; Regoli F; Sanchez-Vidal A; Bebianno MJ Environ Pollut; 2017 Sep; 228():169-178. PubMed ID: 28531798 [TBL] [Abstract][Full Text] [Related]
8. A modified drag coefficient model for calculating the terminal settling velocity and horizontal diffusion distance of irregular plume particles in deep-sea mining. Liu ZL; Rao QH; Yi W; Huang W Environ Sci Pollut Res Int; 2024 May; 31(23):33848-33866. PubMed ID: 38691288 [TBL] [Abstract][Full Text] [Related]
9. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds. Gil M; Ramil F; AgÍs JA Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142 [TBL] [Abstract][Full Text] [Related]
10. Functional, biochemical and molecular impact of sediment plumes from deep-sea mining on Mytilus galloprovincialis under hyperbaric conditions. Pinheiro M; Oliveira A; Barros S; Alves N; Raimundo J; Caetano M; Coimbra J; Neuparth T; Santos MM Environ Res; 2021 Apr; 195():110753. PubMed ID: 33485911 [TBL] [Abstract][Full Text] [Related]
11. Coral reefs chronically exposed to river sediment plumes in the southwestern Caribbean: Rosario Islands, Colombia. Restrepo JD; Park E; Aquino S; Latrubesse EM Sci Total Environ; 2016 May; 553():316-329. PubMed ID: 26933966 [TBL] [Abstract][Full Text] [Related]
12. Field experimental observations of highly graded sediment plumes. Jensen JH; Saremi S; Jimenez C; Hadjioannou L Mar Pollut Bull; 2015 Jun; 95(1):72-80. PubMed ID: 25935811 [TBL] [Abstract][Full Text] [Related]
13. In situ optical measurement of particles in sediment plumes generated by a pre-prototype polymetallic nodule collector. Mousadik SE; Ouillon R; Muñoz-Royo C; Slade W; Pottsmith C; Leeuw T; Alford MH; Mikkelsen OA; Peacock T Sci Rep; 2024 Oct; 14(1):23894. PubMed ID: 39396030 [TBL] [Abstract][Full Text] [Related]
14. Deep-sea mining rock-fragment dispersal scenarios associated with submesoscale forcings: A case study in the Atlantic. Amorim FN; Caetano M; Bastos L; Iglesias I Heliyon; 2024 Jul; 10(14):e34174. PubMed ID: 39108863 [TBL] [Abstract][Full Text] [Related]
15. Direct Monitoring Reveals Initiation of Turbidity Currents From Extremely Dilute River Plumes. Hage S; Cartigny MJB; Sumner EJ; Clare MA; Hughes Clarke JE; Talling PJ; Lintern DG; Simmons SM; Silva Jacinto R; Vellinga AJ; Allin JR; Azpiroz-Zabala M; Gales JA; Hizzett JL; Hunt JE; Mozzato A; Parsons DR; Pope EL; Stacey CD; Symons WO; Vardy ME; Watts C Geophys Res Lett; 2019 Oct; 46(20):11310-11320. PubMed ID: 31894170 [TBL] [Abstract][Full Text] [Related]
16. Evaluating deep-sea communities' susceptibility to mining plumes using shallow-water data. van der Grient JMA; Drazen JC Sci Total Environ; 2022 Dec; 852():158162. PubMed ID: 35988633 [TBL] [Abstract][Full Text] [Related]
17. Numerical calculations of environmental impacts for deep sea mining activities. Ma W; Schott D; van Rhee C Sci Total Environ; 2019 Feb; 652():996-1012. PubMed ID: 30586835 [TBL] [Abstract][Full Text] [Related]
18. Wave Glider Monitoring of Sediment Transport and Dredge Plumes in a Shallow Marine Sandbank Environment. Van Lancker V; Baeye M PLoS One; 2015; 10(6):e0128948. PubMed ID: 26070156 [TBL] [Abstract][Full Text] [Related]
19. Ecotoxicology of deep-sea environments: Functional and biochemical effects of suspended sediments in the model species Mytilus galloprovincialis under hyperbaric conditions. Pinheiro M; Caetano M; Neuparth T; Barros S; Soares J; Raimundo J; Vale C; Coimbra J; Castro LFC; Santos MM Sci Total Environ; 2019 Jun; 670():218-225. PubMed ID: 30903895 [TBL] [Abstract][Full Text] [Related]
20. Genomic and Transcriptomic Resolution of Organic Matter Utilization Among Deep-Sea Bacteria in Guaymas Basin Hydrothermal Plumes. Li M; Jain S; Dick GJ Front Microbiol; 2016; 7():1125. PubMed ID: 27512389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]