BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 32193497)

  • 1. Neural dynamics of grip and goal integration during the processing of others' actions with objects: An ERP study.
    Decroix J; Roger C; Kalénine S
    Sci Rep; 2020 Mar; 10(1):5065. PubMed ID: 32193497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What first drives visual attention during the recognition of object-directed actions? The role of kinematics and goal information.
    Decroix J; Kalénine S
    Atten Percept Psychophys; 2019 Oct; 81(7):2400-2409. PubMed ID: 31292941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Timing of grip and goal activation during action perception: a priming study.
    Decroix J; Kalénine S
    Exp Brain Res; 2018 Aug; 236(8):2411-2426. PubMed ID: 29909461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using goal- and grip-related information for understanding the correctness of other's actions: an ERP study.
    van Elk M; Bousardt R; Bekkering H; van Schie HT
    PLoS One; 2012; 7(5):e36450. PubMed ID: 22606261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbing the action observation network during perception and categorization of actions' goals and grips: state-dependency and virtual lesion TMS effects.
    Jacquet PO; Avenanti A
    Cereb Cortex; 2015 Mar; 25(3):598-608. PubMed ID: 24084126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can the early visual processing of others' actions be related to social power and dominance?
    Decroix J; Ott L; Morgado N; Kalénine S
    Psychol Res; 2022 Sep; 86(6):1858-1870. PubMed ID: 34802076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perceptual and motor-based responses to hand actions on objects: evidence from ERPs.
    Kumar S; Yoon EY; Humphreys GW
    Exp Brain Res; 2012 Jul; 220(2):153-64. PubMed ID: 22644235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State-dependent TMS of inferior frontal and parietal cortices highlights integration of grip configuration and functional goals during action recognition.
    Decroix J; Borgomaneri S; Kalénine S; Avenanti A
    Cortex; 2020 Nov; 132():51-62. PubMed ID: 32932193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. No evidence from MVPA for different processes underlying the N300 and N400 incongruity effects in object-scene processing.
    Draschkow D; Heikel E; Võ ML; Fiebach CJ; Sassenhagen J
    Neuropsychologia; 2018 Nov; 120():9-17. PubMed ID: 30261162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conceptual knowledge for understanding other's actions is organized primarily around action goals.
    van Elk M; van Schie HT; Bekkering H
    Exp Brain Res; 2008 Jul; 189(1):99-107. PubMed ID: 18521584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes in the neural dynamics of bottom-up and top-down processing during visual object recognition: an electrophysiological investigation.
    Lai LY; Frömer R; Festa EK; Heindel WC
    Neurobiol Aging; 2020 Oct; 94():38-49. PubMed ID: 32562874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Event-related brain potentials for goal-related power grips.
    Westerholz J; Schack T; Koester D
    PLoS One; 2013; 8(7):e68501. PubMed ID: 23844211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Objects rapidly prime the motor system when located near the dominant hand.
    Rowe PJ; Haenschel C; Kosilo M; Yarrow K
    Brain Cogn; 2017 Apr; 113():102-108. PubMed ID: 28167410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory and semantic activations evoked by action attributes of manipulable objects: Evidence from ERPs.
    Lee CL; Huang HW; Federmeier KD; Buxbaum LJ
    Neuroimage; 2018 Feb; 167():331-341. PubMed ID: 29183777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The N400-concreteness effect reflects the retrieval of semantic information during the preparation of meaningful actions.
    van Elk M; van Schie HT; Bekkering H
    Biol Psychol; 2010 Sep; 85(1):134-42. PubMed ID: 20542081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Planning Ahead: Object-Directed Sequential Actions Decoded from Human Frontoparietal and Occipitotemporal Networks.
    Gallivan JP; Johnsrude IS; Flanagan JR
    Cereb Cortex; 2016 Feb; 26(2):708-30. PubMed ID: 25576538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neural correlates of infant and adult goal prediction: evidence for semantic processing systems.
    Reid VM; Hoehl S; Grigutsch M; Groendahl A; Parise E; Striano T
    Dev Psychol; 2009 May; 45(3):620-9. PubMed ID: 19413420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actions.
    Vesia M; Bolton DA; Mochizuki G; Staines WR
    Neuropsychologia; 2013 Feb; 51(3):410-7. PubMed ID: 23206539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pouring or chilling a bottle of wine: an fMRI study on the prospective planning of object-directed actions.
    van Elk M; Viswanathan S; van Schie HT; Bekkering H; Grafton ST
    Exp Brain Res; 2012 Apr; 218(2):189-200. PubMed ID: 22349497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Objects automatically potentiate action: an fMRI study of implicit processing.
    Grèzes J; Tucker M; Armony J; Ellis R; Passingham RE
    Eur J Neurosci; 2003 Jun; 17(12):2735-40. PubMed ID: 12823480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.