These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32193925)

  • 1. Integration of Enzymatic Labeling with Single-Molecule Detection for Sensitive Quantification of Diverse DNA Damages.
    Zhang Y; Hua RN; Zhang CY
    Anal Chem; 2020 Apr; 92(7):4700-4706. PubMed ID: 32193925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the Isolated and the Clustered DNA Damages by Single-Molecule Counting.
    Zhang Y; Hua RN; Zhang CY
    Anal Chem; 2019 Aug; 91(16):10381-10385. PubMed ID: 31364352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a damage site-specific fluorescent biosensor for single-molecule detection of DNA damage.
    Zhang Y; Han Y; Zou X; Xu Q; Ma F; Zhang CY
    Talanta; 2021 Dec; 235():122809. PubMed ID: 34517666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of Bioluminescent Sensors for Label-Free, Template-Free, Separation-Free, and Sequence-Independent Detection of both Clustered and Isolated Damage in Genomic DNA.
    Li CC; Liu WX; Jiang S; Liu M; Luo X; Zhang CY
    Anal Chem; 2022 Oct; 94(42):14716-14724. PubMed ID: 36223141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a single quantum dot nanosensor with the capability of sensing methylcytosine sites for sensitive quantification of methyltransferase.
    Hu J; Liu Y; Zhang CY
    Nanoscale; 2020 Feb; 12(7):4519-4526. PubMed ID: 32039424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule visualization of ROS-induced DNA damage in large DNA molecules.
    Lee J; Kim Y; Lim S; Jo K
    Analyst; 2016 Feb; 141(3):847-52. PubMed ID: 26661446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent Biosensors Based on Single-Molecule Counting.
    Ma F; Li Y; Tang B; Zhang CY
    Acc Chem Res; 2016 Sep; 49(9):1722-30. PubMed ID: 27583695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoprobe-Initiated Enzymatic Polymerization for Highly Sensitive Electrochemical DNA Detection.
    Wan Y; Wang P; Su Y; Wang L; Pan D; Aldalbahi A; Yang S; Zuo X
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25618-23. PubMed ID: 26524941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple and sensitive microRNA labeling by terminal deoxynucleotidyl transferase.
    Zhao B; Gong Z; Ma Z; Wang D; Jin Y
    Acta Biochim Biophys Sin (Shanghai); 2012 Feb; 44(2):129-35. PubMed ID: 22189512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The semi-quantitative comparison of oxidative stress mediated DNA single and double strand breaks using terminal deoxynucleotidyl transferase mediated end labeling combined with a slot blot technique.
    Honda S; Sugita I; Miki K; Saito I
    Free Radic Res; 2004 May; 38(5):481-5. PubMed ID: 15293555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A terminal extension-actuated isothermal exponential amplification strategy toward the ultrasensitive and versatile detection of enzyme activity in a single cell.
    Tian W; Wang G; Liu X; Ren W; Liu C; Li Z
    Talanta; 2020 May; 211():120704. PubMed ID: 32070604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive electrochemical DNA sensor based on the target induced structural switching and surface-initiated enzymatic polymerization.
    Wan Y; Wang P; Su Y; Zhu X; Yang S; Lu J; Gao J; Fan C; Huang Q
    Biosens Bioelectron; 2014 May; 55():231-6. PubMed ID: 24384265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplified on-chip fluorescence detection of DNA hybridization by surface-initiated enzymatic polymerization.
    Tjong V; Yu H; Hucknall A; Rangarajan S; Chilkoti A
    Anal Chem; 2011 Jul; 83(13):5153-9. PubMed ID: 21604676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cationic conjugated polymers for optical detection of DNA methylation, lesions, and single nucleotide polymorphisms.
    Duan X; Liu L; Feng F; Wang S
    Acc Chem Res; 2010 Feb; 43(2):260-70. PubMed ID: 19954139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free detection of miRNA cancer markers based on terminal deoxynucleotidyl transferase-induced copper nanoclusters.
    Li Y; Tang D; Zhu L; Cai J; Chu C; Wang J; Xia M; Cao Z; Zhu H
    Anal Biochem; 2019 Nov; 585():113346. PubMed ID: 31401004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apoptosis and its regulation in flat-type early colorectal carcinoma: comparison with that in polypoid-type early colorectal carcinoma.
    Ozawa A; Konishi F; Fukayama M; Kanazawa K
    Dis Colon Rectum; 2000 Oct; 43(10 Suppl):S23-8. PubMed ID: 11052474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Base-Excision-Repair-Induced Construction of a Single Quantum-Dot-Based Sensor for Sensitive Detection of DNA Glycosylase Activity.
    Wang LJ; Ma F; Tang B; Zhang CY
    Anal Chem; 2016 Aug; 88(15):7523-9. PubMed ID: 27401302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lighting up individual DNA damage sites by in vitro repair synthesis.
    Zirkin S; Fishman S; Sharim H; Michaeli Y; Don J; Ebenstein Y
    J Am Chem Soc; 2014 May; 136(21):7771-6. PubMed ID: 24802414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single quantum dot-based nanosensor for rapid and sensitive detection of terminal deoxynucleotidyl transferase.
    Wang LJ; Luo ML; Zhang Q; Tang B; Zhang CY
    Chem Commun (Camb); 2017 Oct; 53(80):11016-11019. PubMed ID: 28936504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-State Nanopore Analysis of Diverse DNA Base Modifications Using a Modular Enzymatic Labeling Process.
    Wang F; Zahid OK; Swain BE; Parsonage D; Hollis T; Harvey S; Perrino FW; Kohli RM; Taylor EW; Hall AR
    Nano Lett; 2017 Nov; 17(11):7110-7116. PubMed ID: 28967259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.