These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32194101)

  • 1. In vitro study of bioaccessibility, antioxidant, and α-glucosidase inhibitory effect of pelargonidin-3-O-glucoside after interacting with beta-lactoglobulin and chitosan/pectin.
    Gowd V; Karim N; Xie L; Shishir MRI; Xu Y; Chen W
    Int J Biol Macromol; 2020 Jul; 154():380-389. PubMed ID: 32194101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colonic delivery of pelargonidin-3-O-glucoside using pectin-chitosan-nanoliposome: Transport mechanism and bioactivity retention.
    Shishir MRI; Karim N; Xie J; Rashwan AK; Chen W
    Int J Biol Macromol; 2020 Sep; 159():341-355. PubMed ID: 32417541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro evaluation of the effects of protein-polyphenol-polysaccharide interactions on (+)-catechin and cyanidin-3-glucoside bioaccessibility.
    Oliveira A; Pintado M
    Food Funct; 2015 Nov; 6(11):3444-53. PubMed ID: 26289110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behaviour of cyanidin-3-glucoside, β-lactoglobulin and polysaccharides nanoparticles in bulk and oil-in-water interfaces.
    Oliveira A; Ruiz-Henestrosa VM; von Staszewski M; Pilosof AM; Pintado M
    Carbohydr Polym; 2015 Nov; 132():460-71. PubMed ID: 26256371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the physicochemical stability and functionality of nanoliposome using green polymer for the delivery of pelargonidin-3-O-glucoside.
    Shishir MRI; Karim N; Xu Y; Xie J; Chen W
    Food Chem; 2021 Feb; 337():127654. PubMed ID: 32791428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocomplexes composed of chitosan derivatives and β-Lactoglobulin as a carrier for anthocyanins: Preparation, stability and bioavailability in vitro.
    Ge J; Yue X; Wang S; Chi J; Liang J; Sun Y; Gao X; Yue P
    Food Res Int; 2019 Feb; 116():336-345. PubMed ID: 30716954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anthocyanins of Pithecellobium dulce (Roxb.) Benth. Fruit Associated with High Antioxidant and α-Glucosidase Inhibitory Activities.
    López-Angulo G; Montes-Avila J; Sánchez-Ximello L; Díaz-Camacho SP; Miranda-Soto V; López-Valenzuela JA; Delgado-Vargas F
    Plant Foods Hum Nutr; 2018 Dec; 73(4):308-313. PubMed ID: 30238426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study on physicochemical characteristics, α-glucosidase inhibitory effect, and hypoglycemic activity of pectins from normal and Huanglongbing-infected navel orange peels.
    Liang T; Hu J; Song H; Xiong L; Li Y; Zhou Y; Mao L; Tian J; Yan H; Gong E; Fei J; Sun Y; Zhang H; Wang X
    J Food Biochem; 2022 Oct; 46(10):e14280. PubMed ID: 35746862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of action of Pelargonidin-3-O-glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits.
    Duarte LJ; Chaves VC; Nascimento MVPDS; Calvete E; Li M; Ciraolo E; Ghigo A; Hirsch E; Simões CMO; Reginatto FH; Dalmarco EM
    Food Chem; 2018 May; 247():56-65. PubMed ID: 29277228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. α-Glucosidase inhibitory effect of anthocyanins from Cinnamomum camphora fruit: Inhibition kinetics and mechanistic insights through in vitro and in silico studies.
    Chen JG; Wu SF; Zhang QF; Yin ZP; Zhang L
    Int J Biol Macromol; 2020 Jan; 143():696-703. PubMed ID: 31521662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, α-amylase and α-glucosidase inhibitory activity of polysaccharides from Inonotus obliquus.
    Wang C; Li W; Chen Z; Gao X; Yuan G; Pan Y; Chen H
    Food Res Int; 2018 Jan; 103():280-288. PubMed ID: 29389616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding affinity between dietary polyphenols and β-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed.
    Stojadinovic M; Radosavljevic J; Ognjenovic J; Vesic J; Prodic I; Stanic-Vucinic D; Cirkovic Velickovic T
    Food Chem; 2013 Feb; 136(3-4):1263-71. PubMed ID: 23194522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of in vitro simulated gastrointestinal digestion on polyphenol and polysaccharide content and their biological activities among 22 fruit juices.
    He M; Zeng J; Zhai L; Liu Y; Wu H; Zhang R; Li Z; Xia E
    Food Res Int; 2017 Dec; 102():156-162. PubMed ID: 29195935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blueberry pectin and increased anthocyanins stability under in vitro digestion.
    Koh J; Xu Z; Wicker L
    Food Chem; 2020 Jan; 302():125343. PubMed ID: 31430630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laccase mediated conjugation of heat treated β-lactoglobulin and sugar beet pectin.
    Jung J; Wicker L
    Carbohydr Polym; 2012 Aug; 89(4):1244-9. PubMed ID: 24750938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examination of molecular mechanism for the enhanced thermal stability of anthocyanins by metal cations and polysaccharides.
    Tachibana N; Kimura Y; Ohno T
    Food Chem; 2014 Jan; 143():452-8. PubMed ID: 24054266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of α-casein and β-casein on the stability, antioxidant activity and bioaccessibility of blueberry anthocyanins with an in vitro simulated digestion.
    Lang Y; Li B; Gong E; Shu C; Si X; Gao N; Zhang W; Cui H; Meng X
    Food Chem; 2021 Jan; 334():127526. PubMed ID: 32702589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Study of Dietary Flavonoids with Different Structures as α-Glucosidase Inhibitors and Insulin Sensitizers.
    Jia Y; Ma Y; Cheng G; Zhang Y; Cai S
    J Agric Food Chem; 2019 Sep; 67(37):10521-10533. PubMed ID: 31461284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of catechin-grafted chitosan with antioxidant and antidiabetic potential.
    Zhu W; Zhang Z
    Int J Biol Macromol; 2014 Sep; 70():150-5. PubMed ID: 24995632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some biological activities of Epaltes divaricata L. - an in vitro study.
    Glorybai L; Kannan K B; Arasu MV; Al-Dhabi NA; Agastian P
    Ann Clin Microbiol Antimicrob; 2015 Mar; 14():18. PubMed ID: 25879935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.