These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 32194227)

  • 21. Heterosynaptic GABA
    Manz KM; Baxley AG; Zurawski Z; Hamm HE; Grueter BA
    J Neurosci; 2019 Nov; 39(47):9277-9293. PubMed ID: 31578230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accumulated GABA activates presynaptic GABAB receptors and inhibits both excitatory and inhibitory synaptic transmission in rat midbrain periaqueductal gray.
    Li G; Shao C; Chen Q; Wang Q; Yang K
    Neuroreport; 2017 Apr; 28(6):313-318. PubMed ID: 28272262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of GABA
    Barbero-Castillo A; Mateos-Aparicio P; Dalla Porta L; Camassa A; Perez-Mendez L; Sanchez-Vives MV
    J Neurosci; 2021 Jun; 41(23):5029-5044. PubMed ID: 33906901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-type specific GABA synaptic transmission and activity-dependent plasticity in rat hippocampal stratum radiatum interneurons.
    Patenaude C; Massicotte G; Lacaille JC
    Eur J Neurosci; 2005 Jul; 22(1):179-88. PubMed ID: 16029207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GABA(B) receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses.
    Hirono M; Yoshioka T; Konishi S
    Nat Neurosci; 2001 Dec; 4(12):1207-16. PubMed ID: 11704764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of GPCR modulation of GABAergic transmission in chicken nucleus laminaris neurons.
    Tang ZQ; Lu Y
    PLoS One; 2012; 7(4):e35831. PubMed ID: 22545142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Blockade of presynaptic 4-aminopyridine-sensitive potassium channels increases initial neurotransmitter release probability, reinstates synaptic transmission altered by GABAB receptor activation in rat midbrain periaqueductal gray.
    Li G; Liu ZL; Zhang WN; Yang K
    Neuroreport; 2016 Jan; 27(1):50-5. PubMed ID: 26575285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fine Tuning of Synaptic Plasticity and Filtering by GABA Released from Hippocampal Autaptic Granule Cells.
    Valente P; Orlando M; Raimondi A; Benfenati F; Baldelli P
    Cereb Cortex; 2016 Mar; 26(3):1149-67. PubMed ID: 25576534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GABAB receptor-mediated inhibition of GABAA receptor calcium elevations in developing hypothalamic neurons.
    Obrietan K; van den Pol AN
    J Neurophysiol; 1998 Mar; 79(3):1360-70. PubMed ID: 9497417
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neurexins regulate presynaptic GABA
    Luo F; Sclip A; Merrill S; Südhof TC
    Nat Commun; 2021 Apr; 12(1):2380. PubMed ID: 33888718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of cortical microcircuits by unitary GABA-mediated volume transmission.
    Oláh S; Füle M; Komlósi G; Varga C; Báldi R; Barzó P; Tamás G
    Nature; 2009 Oct; 461(7268):1278-81. PubMed ID: 19865171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Globus pallidus neurons dynamically regulate the activity pattern of subthalamic nucleus neurons through the frequency-dependent activation of postsynaptic GABAA and GABAB receptors.
    Hallworth NE; Bevan MD
    J Neurosci; 2005 Jul; 25(27):6304-15. PubMed ID: 16000620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GABAB receptor- and metabotropic glutamate receptor-dependent cooperative long-term potentiation of rat hippocampal GABAA synaptic transmission.
    Patenaude C; Chapman CA; Bertrand S; Congar P; Lacaille JC
    J Physiol; 2003 Nov; 553(Pt 1):155-67. PubMed ID: 12963794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GABAB receptor-dependent modulation of network activity in the rat prefrontal cortex in vitro.
    Wang Y; Neubauer FB; Lüscher HR; Thurley K
    Eur J Neurosci; 2010 May; 31(9):1582-94. PubMed ID: 20525071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hippocampal CA1 lacunosum-moleculare interneurons: modulation of monosynaptic GABAergic IPSCs by presynaptic GABAB receptors.
    Khazipov R; Congar P; Ben-Ari Y
    J Neurophysiol; 1995 Nov; 74(5):2126-37. PubMed ID: 8592201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synchronization properties of spindle oscillations in a thalamic reticular nucleus model.
    Golomb D; Wang XJ; Rinzel J
    J Neurophysiol; 1994 Sep; 72(3):1109-26. PubMed ID: 7807198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GABAB receptor modulation of synaptic function.
    Chalifoux JR; Carter AG
    Curr Opin Neurobiol; 2011 Apr; 21(2):339-44. PubMed ID: 21376567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct mechanisms of CB1 and GABA
    Sitzia G; Abrahao KP; Liput D; Calandra GM; Lovinger DM
    J Physiol; 2023 Jan; 601(1):195-209. PubMed ID: 36412169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GABA
    Wang H; Haas JS
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices.
    Destexhe A; Bal T; McCormick DA; Sejnowski TJ
    J Neurophysiol; 1996 Sep; 76(3):2049-70. PubMed ID: 8890314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.