These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 32194367)

  • 1. Latent Factor Decoding of Multi-Channel EEG for Emotion Recognition Through Autoencoder-Like Neural Networks.
    Li X; Zhao Z; Song D; Zhang Y; Pan J; Wu L; Huo J; Niu C; Wang D
    Front Neurosci; 2020; 14():87. PubMed ID: 32194367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
    Luo Y; Zhu LZ; Wan ZY; Lu BL
    J Neural Eng; 2020 Oct; 17(5):056021. PubMed ID: 33052888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAE+LSTM: A New Framework for Emotion Recognition From Multi-Channel EEG.
    Xing X; Li Z; Xu T; Shu L; Hu B; Xu X
    Front Neurorobot; 2019; 13():37. PubMed ID: 31244638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder.
    Liu J; Wu G; Luo Y; Qiu S; Yang S; Li W; Bi Y
    Front Syst Neurosci; 2020; 14():43. PubMed ID: 32982703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Efficient Graph Learning System for Emotion Recognition Inspired by the Cognitive Prior Graph of EEG Brain Network.
    Li C; Tang T; Pan Y; Yang L; Zhang S; Chen Z; Li P; Gao D; Chen H; Li F; Yao D; Cao Z; Xu P
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; PP():. PubMed ID: 38837920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An LSTM-based adversarial variational autoencoder framework for self-supervised neural decoding of behavioral choices.
    Salsabilian S; Lee C; Margolis D; Najafizadeh L
    J Neural Eng; 2024 Jul; 21(3):. PubMed ID: 38621379
    [No Abstract]   [Full Text] [Related]  

  • 7. Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks.
    Bao G; Yan B; Tong L; Shu J; Wang L; Yang K; Zeng Y
    Front Comput Neurosci; 2021; 15():723843. PubMed ID: 34955797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multimodal dynamical variational autoencoder for audiovisual speech representation learning.
    Sadok S; Leglaive S; Girin L; Alameda-Pineda X; Séguier R
    Neural Netw; 2024 Apr; 172():106120. PubMed ID: 38266474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroencephalogram Emotion Recognition Based on 3D Feature Fusion and Convolutional Autoencoder.
    An Y; Hu S; Duan X; Zhao L; Xie C; Zhao Y
    Front Comput Neurosci; 2021; 15():743426. PubMed ID: 34733148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Latent Multi-Source Adaptation for Encephalogram-Based Emotion Recognition.
    Tao J; Dan Y; Zhou D; He S
    Front Neurosci; 2022; 16():850906. PubMed ID: 35573289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective Emotion Recognition by Learning Discriminative Graph Topologies in EEG Brain Networks.
    Li C; Li P; Zhang Y; Li N; Si Y; Li F; Cao Z; Chen H; Chen B; Yao D; Xu P
    IEEE Trans Neural Netw Learn Syst; 2024 Aug; 35(8):10258-10272. PubMed ID: 37022389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature Extraction and Identification of Alzheimer's Disease based on Latent Factor of Multi-Channel EEG.
    Li K; Wang J; Li S; Yu H; Zhu L; Liu J; Wu L
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1557-1567. PubMed ID: 34329166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition.
    Cimtay Y; Ekmekcioglu E
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Scale Frequency Bands Ensemble Learning for EEG-Based Emotion Recognition.
    Shen F; Peng Y; Kong W; Dai G
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Sparse Autoencoder and Recursive Neural Network for EEG Emotion Recognition.
    Li Q; Liu Y; Shang Y; Zhang Q; Yan F
    Entropy (Basel); 2022 Aug; 24(9):. PubMed ID: 36141073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG Data Augmentation for Emotion Recognition Using a Conditional Wasserstein GAN.
    Luo Y; Lu BL
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2535-2538. PubMed ID: 30440924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG-Based Multi-Modal Emotion Recognition using Bag of Deep Features: An Optimal Feature Selection Approach.
    Asghar MA; Khan MJ; Fawad ; Amin Y; Rizwan M; Rahman M; Badnava S; Mirjavadi SS
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-Supervised Cross-Subject Emotion Recognition Based on Stacked Denoising Autoencoder Architecture Using a Fusion of Multi-Modal Physiological Signals.
    Luo J; Tian Y; Yu H; Chen Y; Wu M
    Entropy (Basel); 2022 Apr; 24(5):. PubMed ID: 35626462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning Subject-Generalized Topographical EEG Embeddings Using Deep Variational Autoencoders and Domain-Adversarial Regularization.
    Hagad JL; Kimura T; Fukui KI; Numao M
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33806712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-method Fusion of Cross-Subject Emotion Recognition Based on High-Dimensional EEG Features.
    Yang F; Zhao X; Jiang W; Gao P; Liu G
    Front Comput Neurosci; 2019; 13():53. PubMed ID: 31507396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.