BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32194514)

  • 1. Sensitivity of Different Developmental Stages and Resistance Risk Assessment of
    Wu J; Xue Z; Miao J; Zhang F; Gao X; Liu X
    Front Microbiol; 2020; 11():185. PubMed ID: 32194514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wild Type Sensitivity and Mutation Analysis for Resistance Risk to Fluopicolide in Phytophthora capsici.
    Lu XH; Hausbeck MK; Liu XL; Hao JJ
    Plant Dis; 2011 Dec; 95(12):1535-1541. PubMed ID: 30732018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of Isolates of Phytophthora capsici from the Eastern United States to Fluopicolide.
    Keinath AP; Kousik CS
    Plant Dis; 2011 Nov; 95(11):1414-1419. PubMed ID: 30731778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fitness and Competitive Ability of Field Isolates of
    Wang L; Ji P
    Plant Dis; 2021 Apr; 105(4):873-878. PubMed ID: 33151816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the Risk of Development of Fluopicolide Resistance in Phytophthora erythroseptica.
    Zhang X; Jiang H; Hao J
    Plant Dis; 2019 Feb; 103(2):284-288. PubMed ID: 30520695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of fluopicolide-resistance mutants in Phytophthora nicotianae, the pathogen causing black shank disease in tobacco.
    Liu X; Li C; Fu Y; Dai T; Miao J; Liu X
    Pestic Biochem Physiol; 2024 May; 201():105876. PubMed ID: 38685244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of
    Siegenthaler TB; Hansen ZR
    Plant Dis; 2021 Oct; 105(10):3000-3007. PubMed ID: 33736467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two point mutations N771S and K847N in the VHA-a of Phytophthora litchii confer resistance to fluopimomide.
    Dai T; Wang Z; Yang J; Yuan K; Miao J; Liu X
    Pestic Biochem Physiol; 2024 Jun; 202():105900. PubMed ID: 38879291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance assessment for SYP-14288 in Phytophthora capsici and changes in mitochondria electric potential-associated respiration and ATP production confers resistance.
    Wang Z; Peng Q; Hou Y; Gao X; Zhong S; Fang Y; Liu C; Liu X
    Pest Manag Sci; 2020 Jul; 76(7):2525-2536. PubMed ID: 32077584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of Phytophthora nicotianae From Tobacco to Fluopicolide, Mandipropamid, and Oxathiapiprolin.
    Qu T; Shao Y; Csinos AS; Ji P
    Plant Dis; 2016 Oct; 100(10):2119-2125. PubMed ID: 30683015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Baseline sensitivity and resistance-risk assessment of Phytophthora capsici to iprovalicarb.
    Lu XH; Zhu SS; Bi Y; Liu XL; Hao JJ
    Phytopathology; 2010 Nov; 100(11):1162-8. PubMed ID: 20932164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance to the novel fungicide pyrimorph in Phytophthora capsici: risk assessment and detection of point mutations in CesA3 that confer resistance.
    Pang Z; Shao J; Chen L; Lu X; Hu J; Qin Z; Liu X
    PLoS One; 2013; 8(2):e56513. PubMed ID: 23431382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Baseline Sensitivity and Control Efficacy of Tetramycin Against Phytophthora capsici Isolates in China.
    Ma D; Zhu J; He L; Cui K; Mu W; Liu F
    Plant Dis; 2018 May; 102(5):863-868. PubMed ID: 30673383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of Phytophthora capsici on Vegetable Crops in Georgia to Mandipropamid, Dimethomorph, and Cyazofamid.
    Jackson KL; Yin J; Ji P
    Plant Dis; 2012 Sep; 96(9):1337-1342. PubMed ID: 30727160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Baseline sensitivity of natural population and resistance of mutants in Phytophthora capsici to zoxamide.
    Bi Y; Cui X; Lu X; Cai M; Liu X; Hao JJ
    Phytopathology; 2011 Sep; 101(9):1104-11. PubMed ID: 21692644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity and Resistance Assessment of a New OSBP Inhibitor, R034-1, in
    Lin D; Xue Z; Miao J; Huang Z; Liu X
    J Agric Food Chem; 2020 Nov; 68(47):13651-13660. PubMed ID: 33191734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iTRAQ proteomic analysis of the inhibitory effect of 1,6-O,O-diacetylbritannilactone on the plant pathogenic oomycete Phytophthora capsici.
    He L; Wang M; Wang H; Zhao T; Cui K; Zhou L
    Pestic Biochem Physiol; 2022 Jun; 184():105125. PubMed ID: 35715063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and Characterization of QoI-Resistant Phytophthora capsici Causing Pepper Phytophthora Blight in China.
    Ma D; Jiang J; He L; Cui K; Mu W; Liu F
    Plant Dis; 2018 Sep; 102(9):1725-1732. PubMed ID: 30125205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory Effects of Essential Oils for Controlling Phytophthora capsici.
    Bi Y; Jiang H; Hausbeck MK; Hao JJ
    Plant Dis; 2012 Jun; 96(6):797-803. PubMed ID: 30727361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transportation behaviour of fluopicolide and its control effect against Phytophthora capsici in greenhouse tomatoes after soil application.
    Jiang L; Wang H; Xu H; Qiao K; Xia X; Wang K
    Pest Manag Sci; 2015 Jul; 71(7):1008-14. PubMed ID: 25132333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.