BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32194522)

  • 1. Comparative Genome Analysis of the Lignocellulose Degrading Bacteria
    Cortes-Tolalpa L; Wang Y; Salles JF; van Elsas JD
    Front Microbiol; 2020; 11():248. PubMed ID: 32194522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functioning of a tripartite lignocellulolytic microbial consortium cultivated under two shaking conditions: a metatranscriptomic study.
    Wang Y; Jiménez DJ; Zhang Z; van Elsas JD
    Biotechnol Biofuels Bioprod; 2023 Mar; 16(1):54. PubMed ID: 36991472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial Synergism in Lignocellulose Biomass Degradation - Complementary Roles of Degraders As Influenced by Complexity of the Carbon Source.
    Cortes-Tolalpa L; Salles JF; van Elsas JD
    Front Microbiol; 2017; 8():1628. PubMed ID: 29067002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Considerations on the Identity and Diversity of Organisms Affiliated with
    Wang Y; Brons JK; van Elsas JD
    Microorganisms; 2021 Sep; 9(10):. PubMed ID: 34683378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining the eco-enzymological role of the fungal strain Coniochaeta sp. 2T2.1 in a tripartite lignocellulolytic microbial consortium.
    Jiménez DJ; Wang Y; Chaib de Mares M; Cortes-Tolalpa L; Mertens JA; Hector RE; Lin J; Johnson J; Lipzen A; Barry K; Mondo SJ; Grigoriev IV; Nichols NN; van Elsas JD
    FEMS Microbiol Ecol; 2020 Jan; 96(1):. PubMed ID: 31769802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of culture conditions on the performance of lignocellulose-degrading synthetic microbial consortia.
    Wang Y; Elzenga T; van Elsas JD
    Appl Microbiol Biotechnol; 2021 Oct; 105(20):7981-7995. PubMed ID: 34596724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome analysis of cellulose and hemicellulose degrading
    Chen SJ; Lam MQ; Thevarajoo S; Abd Manan F; Yahya A; Chong CS
    3 Biotech; 2020 Apr; 10(4):160. PubMed ID: 32206494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of lesquerolic acid to 14-oxo-11(Z)-eicosenoic acid by genetically variable Sphingobacterium multivorum strains.
    Kuo TM; Rooney AP; Isbell TA
    Curr Microbiol; 2008 Jul; 57(1):55-60. PubMed ID: 18379841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole genome sequencing and analysis of fenvalerate degrading bacteria Citrobacter freundii CD-9.
    Zhou X; Lei D; Tang J; Wu M; Ye H; Zhang Q
    AMB Express; 2022 May; 12(1):51. PubMed ID: 35523901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Genomics of Rumen
    Palevich N; Kelly WJ; Leahy SC; Denman S; Altermann E; Rakonjac J; Attwood GT
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31653790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw.
    Jiménez DJ; Chaves-Moreno D; van Elsas JD
    Sci Rep; 2015 Sep; 5():13845. PubMed ID: 26343383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of three plant biomass-degrading microbial consortia by metagenomics- and metasecretomics-based approaches.
    Jiménez DJ; de Lima Brossi MJ; Schückel J; Kračun SK; Willats WG; van Elsas JD
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10463-10477. PubMed ID: 27418359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depiction of carbohydrate-active enzyme diversity in Caldicellulosiruptor sp. F32 at the genome level reveals insights into distinct polysaccharide degradation features.
    Meng DD; Ying Y; Zhang KD; Lu M; Li FL
    Mol Biosyst; 2015 Nov; 11(11):3164-73. PubMed ID: 26392378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Citrobacter freundii as a test platform for recombinant cellulose degradation systems.
    Lakhundi SS; Duedu KO; Cain N; Nagy R; Krakowiak J; French CE
    Lett Appl Microbiol; 2017 Jan; 64(1):35-42. PubMed ID: 27617802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic characterization of
    Lalaoui R; Djukovic A; Bakour S; Hadjadj L; Sanz J; Salavert M; López-Hontangas JL; Sanz MA; Ubeda C; Rolain JM
    Antimicrob Resist Infect Control; 2019; 8():167. PubMed ID: 31687131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholangitis with Sphingobacterium multivorum and Acinetobacter junii bacteremia in a patient with gastric cancer: A case report.
    Akazawa N; Itoh N; Morioka H; Ogata T; Ishibana Y; Murakami H; Narita Y
    J Infect Chemother; 2022 Oct; 28(10):1419-1423. PubMed ID: 35718261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of hexaconazole-degrading strain Sphingobacterium multivorum and analysis of transcriptome for biodegradation mechanism.
    An X; Tian C; Xu J; Dong F; Liu X; Wu X; Zheng Y
    Sci Total Environ; 2020 Jun; 722():137171. PubMed ID: 32213434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metasecretome analysis of a lignocellulolytic microbial consortium grown on wheat straw, xylan and xylose.
    Jiménez DJ; Maruthamuthu M; van Elsas JD
    Biotechnol Biofuels; 2015; 8():199. PubMed ID: 26628913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome Sequence of Microbulbifer mangrovi DD-13
    Imran M; Pant P; Shanbhag YP; Sawant SV; Ghadi SC
    Mar Biotechnol (NY); 2017 Feb; 19(1):116-124. PubMed ID: 28161851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome Analysis of
    Radzlin N; Yaakop AS; Goh KM; Liew KJ; Zakaria II; Kahar UM
    Microorganisms; 2022 Feb; 10(2):. PubMed ID: 35208867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.