These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
395 related articles for article (PubMed ID: 32194544)
1. Circulating miRNAs as Potential Biomarkers in Myasthenia Gravis: Tools for Personalized Medicine. Sabre L; Punga T; Punga AR Front Immunol; 2020; 11():213. PubMed ID: 32194544 [TBL] [Abstract][Full Text] [Related]
2. Circulating microRNAs as potential biomarkers in myasthenia gravis patients. Punga AR; Punga T Ann N Y Acad Sci; 2018 Jan; 1412(1):33-40. PubMed ID: 29125182 [TBL] [Abstract][Full Text] [Related]
3. Circulating microRNA miR-21-5p, miR-150-5p and miR-30e-5p correlate with clinical status in late onset myasthenia gravis. Sabre L; Maddison P; Sadalage G; Ambrose PA; Punga AR J Neuroimmunol; 2018 Aug; 321():164-170. PubMed ID: 29804819 [TBL] [Abstract][Full Text] [Related]
4. Estrogen Receptor, Inflammatory, and FOXO Transcription Factors Regulate Expression of Myasthenia Gravis-Associated Circulating microRNAs. Fiorillo AA; Heier CR; Huang YF; Tully CB; Punga T; Punga AR Front Immunol; 2020; 11():151. PubMed ID: 32153563 [TBL] [Abstract][Full Text] [Related]
5. Towards Personalized Medicine in Myasthenia Gravis: Role of Circulating microRNAs miR-30e-5p, miR-150-5p and miR-21-5p. Beretta F; Huang YF; Punga AR Cells; 2022 Feb; 11(4):. PubMed ID: 35203389 [TBL] [Abstract][Full Text] [Related]
6. Circulating miRNAs drive personalized medicine based on subgroup classification in myasthenia gravis patients. Huang X; Zhang Z; Wang Y; Xu M; Du X; Zhang Y Neurol Sci; 2023 Nov; 44(11):3877-3884. PubMed ID: 37402938 [TBL] [Abstract][Full Text] [Related]
7. Disease specific enrichment of circulating let-7 family microRNA in MuSK+ myasthenia gravis. Punga T; Bartoccioni E; Lewandowska M; Damato V; Evoli A; Punga AR J Neuroimmunol; 2016 Mar; 292():21-6. PubMed ID: 26943954 [TBL] [Abstract][Full Text] [Related]
8. miR-30e-5p as predictor of generalization in ocular myasthenia gravis. Sabre L; Maddison P; Wong SH; Sadalage G; Ambrose PA; Plant GT; Punga AR Ann Clin Transl Neurol; 2019 Feb; 6(2):243-251. PubMed ID: 30847357 [TBL] [Abstract][Full Text] [Related]
9. Differential Expression of miRNA in the Peripheral Blood Mononuclear Cells in Myasthenia Gravis with Muscle-Specific Receptor Tyrosine Kinase Antibodies. Tan Y; Zhu L; Cui L; Guan Y Crit Rev Eukaryot Gene Expr; 2021; 31(2):1-15. PubMed ID: 34347975 [TBL] [Abstract][Full Text] [Related]
10. Circulating microRNA plasma profile in MuSK+ myasthenia gravis. Sabre L; Guptill JT; Russo M; Juel VC; Massey JM; Howard JF; Hobson-Webb LD; Punga AR J Neuroimmunol; 2018 Dec; 325():87-91. PubMed ID: 30316681 [TBL] [Abstract][Full Text] [Related]
11. Characteristics of late-onset myasthenia gravis. Zivković SA; Clemens PR; Lacomis D J Neurol; 2012 Oct; 259(10):2167-71. PubMed ID: 22476514 [TBL] [Abstract][Full Text] [Related]
12. Anti-AChR, MuSK, and LRP4 antibodies coexistence: A rare and distinct subtype of myasthenia gravis from Indian subcontinent. Bokoliya SC; Kumar VP; Nashi S; Polavarapu K; Nalini A; Patil SA Clin Chim Acta; 2018 Nov; 486():34-35. PubMed ID: 30006288 [TBL] [Abstract][Full Text] [Related]
13. Short-term changes in serum miRNA levels and patient-reported clinical outcomes in myasthenia gravis. Huang YF; Bhandage AK; Adeström LD; Punga AR Muscle Nerve; 2024 Aug; 70(2):284-289. PubMed ID: 38855861 [TBL] [Abstract][Full Text] [Related]
14. Analysis of serum miRNA profiles of myasthenia gravis patients. Nogales-Gadea G; Ramos-Fransi A; Suárez-Calvet X; Navas M; Rojas-García R; Mosquera JL; Díaz-Manera J; Querol L; Gallardo E; Illa I PLoS One; 2014; 9(3):e91927. PubMed ID: 24637658 [TBL] [Abstract][Full Text] [Related]
15. MicroRNA signature associated with treatment response in myasthenia gravis: A further step towards precision medicine. Cavalcante P; Mizrachi T; Barzago C; Scandiffio L; Bortone F; Bonanno S; Frangiamore R; Mantegazza R; Bernasconi P; Brenner T; Vaknin-Dembinsky A; Antozzi C Pharmacol Res; 2019 Oct; 148():104388. PubMed ID: 31401213 [TBL] [Abstract][Full Text] [Related]
16. Antititin antibody in early- and late-onset myasthenia gravis. Szczudlik P; Szyluk B; Lipowska M; Ryniewicz B; Kubiszewska J; Dutkiewicz M; Gilhus NE; Kostera-Pruszczyk A Acta Neurol Scand; 2014 Oct; 130(4):229-33. PubMed ID: 24947881 [TBL] [Abstract][Full Text] [Related]
17. Autoimmune associations and autoantibody screening show focused recognition in patient subgroups with generalized myasthenia gravis. Klein R; Marx A; Ströbel P; Schalke B; Nix W; Willcox N Hum Immunol; 2013 Sep; 74(9):1184-93. PubMed ID: 23792059 [TBL] [Abstract][Full Text] [Related]
18. Diagnostic and clinical classification of autoimmune myasthenia gravis. Berrih-Aknin S; Frenkian-Cuvelier M; Eymard B J Autoimmun; 2014; 48-49():143-8. PubMed ID: 24530233 [TBL] [Abstract][Full Text] [Related]
19. Clinical Characteristics of Patients With Double-Seronegative Myasthenia Gravis and Antibodies to Cortactin. Cortés-Vicente E; Gallardo E; Martínez MÁ; Díaz-Manera J; Querol L; Rojas-García R; Illa I JAMA Neurol; 2016 Sep; 73(9):1099-104. PubMed ID: 27379450 [TBL] [Abstract][Full Text] [Related]
20. Disease specific signature of circulating miR-150-5p and miR-21-5p in myasthenia gravis patients. Punga AR; Andersson M; Alimohammadi M; Punga T J Neurol Sci; 2015 Sep; 356(1-2):90-6. PubMed ID: 26095457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]