BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 32194849)

  • 21. Selective radiofrequency ablation of tumor by magnetically targeting of multifunctional iron oxide-gold nanohybrid.
    Beyk J; Tavakoli H
    J Cancer Res Clin Oncol; 2019 Sep; 145(9):2199-2209. PubMed ID: 31309302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model.
    Basel MT; Balivada S; Wang H; Shrestha TB; Seo GM; Pyle M; Abayaweera G; Dani R; Koper OB; Tamura M; Chikan V; Bossmann SH; Troyer DL
    Int J Nanomedicine; 2012; 7():297-306. PubMed ID: 22287840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics.
    Xie W; Guo Z; Gao F; Gao Q; Wang D; Liaw BS; Cai Q; Sun X; Wang X; Zhao L
    Theranostics; 2018; 8(12):3284-3307. PubMed ID: 29930730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia.
    Jordan A; Wust P; Fähling H; John W; Hinz A; Felix R
    Int J Hyperthermia; 1993; 9(1):51-68. PubMed ID: 8433026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro hyperthermic effect of magnetic fluid on cervical and breast cancer cells.
    Bhardwaj A; Parekh K; Jain N
    Sci Rep; 2020 Sep; 10(1):15249. PubMed ID: 32943662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic review of pre-clinical and clinical devices for magnetic resonance-guided radiofrequency hyperthermia.
    Adibzadeh F; Sumser K; Curto S; Yeo DTB; Shishegar AA; Paulides MM
    Int J Hyperthermia; 2020; 37(1):15-27. PubMed ID: 31918599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications.
    Dadfar SM; Roemhild K; Drude NI; von Stillfried S; Knüchel R; Kiessling F; Lammers T
    Adv Drug Deliv Rev; 2019 Jan; 138():302-325. PubMed ID: 30639256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shape Tailored Magnetic Nanorings for Intracellular Hyperthermia Cancer Therapy.
    Dias CSB; Hanchuk TDM; Wender H; Shigeyosi WT; Kobarg J; Rossi AL; Tanaka MN; Cardoso MB; Garcia F
    Sci Rep; 2017 Nov; 7(1):14843. PubMed ID: 29093500
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alternating magnetic field-induced hyperthermia increases iron oxide nanoparticle cell association/uptake and flux in blood-brain barrier models.
    Dan M; Bae Y; Pittman TA; Yokel RA
    Pharm Res; 2015 May; 32(5):1615-25. PubMed ID: 25377069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich's "magic (nano)bullet" for cancer theranostics?
    Datta NR; Krishnan S; Speiser DE; Neufeld E; Kuster N; Bodis S; Hofmann H
    Cancer Treat Rev; 2016 Nov; 50():217-227. PubMed ID: 27756009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localised heating of tumours utilising injectable magnetic nanoparticles for hyperthermia cancer therapy.
    Tseng HY; Lee GB; Lee CY; Shih YH; Lin XZ
    IET Nanobiotechnol; 2009 Jun; 3(2):46-54. PubMed ID: 19485552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multifunctional nano manganese ferrite ferrofluid for efficient theranostic application.
    Beeran AE; Fernandez FB; Nazeer SS; Jayasree RS; John A; Anil S; Vellappally S; Al Kheraif AA; Varma PR
    Colloids Surf B Biointerfaces; 2015 Dec; 136():1089-97. PubMed ID: 26595389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of AEM energy applicator configuration on magnetic nanoparticle mediated hyperthermia for breast cancer.
    Sanapala KK; Hewaparakrama K; Kang KA
    Adv Exp Med Biol; 2011; 701():143-8. PubMed ID: 21445781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of CREKA-conjugated iron oxide nanoparticles for hyperthermia applications.
    Kruse AM; Meenach SA; Anderson KW; Hilt JZ
    Acta Biomater; 2014 Jun; 10(6):2622-9. PubMed ID: 24486913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic nanoparticle hyperthermia for prostate cancer.
    Johannsen M; Thiesen B; Wust P; Jordan A
    Int J Hyperthermia; 2010; 26(8):790-5. PubMed ID: 20653418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era.
    Pucci C; Degl'Innocenti A; Belenli Gümüş M; Ciofani G
    Biomater Sci; 2022 May; 10(9):2103-2121. PubMed ID: 35316317
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia.
    Latorre M; Rinaldi C
    P R Health Sci J; 2009 Sep; 28(3):227-38. PubMed ID: 19715115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multifunctional fluorescent iron quantum clusters for non-invasive radiofrequency ablationof cancer cells.
    Jose A; Surendran M; Fazal S; Prasanth BP; Menon D
    Colloids Surf B Biointerfaces; 2018 May; 165():371-380. PubMed ID: 29525697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI).
    Bauer LM; Situ SF; Griswold MA; Samia AC
    Nanoscale; 2016 Jun; 8(24):12162-9. PubMed ID: 27210742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.