These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 32194858)

  • 1. Allele-specific genome targeting in the development of precision medicine.
    Wu J; Tang B; Tang Y
    Theranostics; 2020; 10(7):3118-3137. PubMed ID: 32194858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AsCRISPR: A Web Server for Allele-Specific Single Guide RNA Design in Precision Medicine.
    Zhao G; Li J; Tang Y
    CRISPR J; 2020 Dec; 3(6):512-522. PubMed ID: 33346704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation-Independent Allele-Specific Editing by CRISPR-Cas9, a Novel Approach to Treat Autosomal Dominant Disease.
    Christie KA; Robertson LJ; Conway C; Blighe K; DeDionisio LA; Chao-Shern C; Kowalczyk AM; Marshall J; Turnbull D; Nesbit MA; Moore CBT
    Mol Ther; 2020 Aug; 28(8):1846-1857. PubMed ID: 32416058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust activation of microhomology-mediated end joining for precision gene editing applications.
    Ata H; Ekstrom TL; Martínez-Gálvez G; Mann CM; Dvornikov AV; Schaefbauer KJ; Ma AC; Dobbs D; Clark KJ; Ekker SC
    PLoS Genet; 2018 Sep; 14(9):e1007652. PubMed ID: 30208061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol for Allele-Specific Epigenome Editing Using CRISPR/dCas9.
    Rajaram N; Bashtrykov P; Jeltsch A
    Methods Mol Biol; 2024; 2842():179-192. PubMed ID: 39012596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Customized optical mapping by CRISPR-Cas9 mediated DNA labeling with multiple sgRNAs.
    Abid HZ; Young E; McCaffrey J; Raseley K; Varapula D; Wang HY; Piazza D; Mell J; Xiao M
    Nucleic Acids Res; 2021 Jan; 49(2):e8. PubMed ID: 33231685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precision genome editing in the CRISPR era.
    Salsman J; Dellaire G
    Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient and allele-specific genome editing of disease loci in human iPSCs.
    Smith C; Abalde-Atristain L; He C; Brodsky BR; Braunstein EM; Chaudhari P; Jang YY; Cheng L; Ye Z
    Mol Ther; 2015 Mar; 23(3):570-7. PubMed ID: 25418680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AlPaCas: allele-specific CRISPR gene editing through a protospacer-adjacent-motif (PAM) approach.
    Rosignoli S; Lustrino E; Conci A; Fabrizi A; Rinaldo S; Latella MC; Enzo E; Prosseda G; De Rosa L; De Luca M; Paiardini A
    Nucleic Acids Res; 2024 Jul; 52(W1):W29-W38. PubMed ID: 38795068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 for Human Genome Engineering and Disease Research.
    Xiong X; Chen M; Lim WA; Zhao D; Qi LS
    Annu Rev Genomics Hum Genet; 2016 Aug; 17():131-54. PubMed ID: 27216776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of super-specific epigenome editing by targeted allele-specific DNA methylation.
    Rajaram N; Kouroukli AG; Bens S; Bashtrykov P; Jeltsch A
    Epigenetics Chromatin; 2023 Oct; 16(1):41. PubMed ID: 37864244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome Engineering for Stem Cell Transplantation.
    Argani H
    Exp Clin Transplant; 2019 Jan; 17(Suppl 1):31-37. PubMed ID: 30777520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mismatch Intolerance of 5'-Truncated sgRNAs in CRISPR/Cas9 Enables Efficient Microbial Single-Base Genome Editing.
    Lee HJ; Kim HJ; Lee SJ
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34208669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. qEva-CRISPR: a method for quantitative evaluation of CRISPR/Cas-mediated genome editing in target and off-target sites.
    Dabrowska M; Czubak K; Juzwa W; Krzyzosiak WJ; Olejniczak M; Kozlowski P
    Nucleic Acids Res; 2018 Sep; 46(17):e101. PubMed ID: 29878242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNP-CRISPR: A Web Tool for SNP-Specific Genome Editing.
    Chen CL; Rodiger J; Chung V; Viswanatha R; Mohr SE; Hu Y; Perrimon N
    G3 (Bethesda); 2020 Feb; 10(2):489-494. PubMed ID: 31822517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [CRISPR/CAS9, the King of Genome Editing Tools].
    Bannikov AV; Lavrov AV
    Mol Biol (Mosk); 2017; 51(4):582-594. PubMed ID: 28900076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome editing in human hematopoietic stem and progenitor cells via CRISPR-Cas9-mediated homology-independent targeted integration.
    Bloomer H; Smith RH; Hakami W; Larochelle A
    Mol Ther; 2021 Apr; 29(4):1611-1624. PubMed ID: 33309880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines.
    Wassef M; Luscan A; Battistella A; Le Corre S; Li H; Wallace MR; Vidaud M; Margueron R
    Methods; 2017 May; 121-122():45-54. PubMed ID: 28499832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.