BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 32194863)

  • 1. Autophagy Modulated by Inorganic Nanomaterials.
    Guo L; He N; Zhao Y; Liu T; Deng Y
    Theranostics; 2020; 10(7):3206-3222. PubMed ID: 32194863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic.
    Bayda S; Hadla M; Palazzolo S; Riello P; Corona G; Toffoli G; Rizzolio F
    Curr Med Chem; 2018; 25(34):4269-4303. PubMed ID: 29284391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic Nanomaterials as Carriers for Drug Delivery.
    Chen S; Hao X; Liang X; Zhang Q; Zhang C; Zhou G; Shen S; Jia G; Zhang J
    J Biomed Nanotechnol; 2016 Jan; 12(1):1-27. PubMed ID: 27301169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological observation of embryoid bodies completes the in vitro evaluation of nanomaterial embryotoxicity in the embryonic stem cell test (EST).
    Corradi S; Dakou E; Yadav A; Thomassen LC; Kirsch-Volders M; Leyns L
    Toxicol In Vitro; 2015 Oct; 29(7):1587-96. PubMed ID: 26093180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Safety assessment of nanomaterials for development of nano-cosmetics].
    Yoshida T; Yoshioka Y; Tsutsumi Y
    Yakugaku Zasshi; 2012; 132(11):1231-6. PubMed ID: 23123712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity of inorganic nanomaterials in biomedical imaging.
    Li J; Chang X; Chen X; Gu Z; Zhao F; Chai Z; Zhao Y
    Biotechnol Adv; 2014; 32(4):727-43. PubMed ID: 24389087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Safety assessment of nanomaterials in reproductive developmental field].
    Yamashita K; Yoshioka Y
    Yakugaku Zasshi; 2012; 132(3):331-5. PubMed ID: 22382838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical and biochemical insights on DNA structures in artificial and living systems.
    Chen N; Li J; Song H; Chao J; Huang Q; Fan C
    Acc Chem Res; 2014 Jun; 47(6):1720-30. PubMed ID: 24588263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomaterial-modulated autophagy: underlying mechanisms and functional consequences.
    Zheng W; Wei M; Li S; Le W
    Nanomedicine (Lond); 2016 Jun; 11(11):1417-30. PubMed ID: 27193191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the toxicity of selected types of nanochemicals.
    Kumar V; Kumari A; Guleria P; Yadav SK
    Rev Environ Contam Toxicol; 2012; 215():39-121. PubMed ID: 22057930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: First Steps towards an Intelligent Testing Strategy.
    Farcal L; Torres Andón F; Di Cristo L; Rotoli BM; Bussolati O; Bergamaschi E; Mech A; Hartmann NB; Rasmussen K; Riego-Sintes J; Ponti J; Kinsner-Ovaskainen A; Rossi F; Oomen A; Bos P; Chen R; Bai R; Chen C; Rocks L; Fulton N; Ross B; Hutchison G; Tran L; Mues S; Ossig R; Schnekenburger J; Campagnolo L; Vecchione L; Pietroiusti A; Fadeel B
    PLoS One; 2015; 10(5):e0127174. PubMed ID: 25996496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Current Understanding of Autophagy in Nanomaterial Toxicity and Its Implementation in Safety Assessment-Related Alternative Testing Strategies.
    Chen RJ; Chen YY; Liao MY; Lee YH; Chen ZY; Yan SJ; Yeh YL; Yang LX; Lee YL; Wu YH; Wang YJ
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32235610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of nanomaterials on autophagy across health and disease conditions.
    Florance I; Cordani M; Pashootan P; Moosavi MA; Zarrabi A; Chandrasekaran N
    Cell Mol Life Sci; 2024 Apr; 81(1):184. PubMed ID: 38630152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential adverse effects of engineered nanomaterials commonly used in food on the miRNome.
    Lim JP; Baeg GH; Srinivasan DK; Dheen ST; Bay BH
    Food Chem Toxicol; 2017 Nov; 109(Pt 1):771-779. PubMed ID: 28720288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes.
    Tavares AM; Louro H; Antunes S; Quarré S; Simar S; De Temmerman PJ; Verleysen E; Mast J; Jensen KA; Norppa H; Nesslany F; Silva MJ
    Toxicol In Vitro; 2014 Feb; 28(1):60-9. PubMed ID: 23811260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomaterial-induced cell death in pulmonary and hepatic cells following exposure to three different metallic materials: The role of autophagy and apoptosis.
    Kermanizadeh A; Jantzen K; Ward MB; Durhuus JA; Juel Rasmussen L; Loft S; Møller P
    Nanotoxicology; 2017 Mar; 11(2):184-200. PubMed ID: 28055265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unified in silico model based on perturbation theory for assessing the genotoxicity of metal oxide nanoparticles.
    Halder AK; Melo A; Cordeiro MNDS
    Chemosphere; 2020 Apr; 244():125489. PubMed ID: 31812055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomaterials and neurodegeneration.
    Migliore L; Uboldi C; Di Bucchianico S; Coppedè F
    Environ Mol Mutagen; 2015 Mar; 56(2):149-70. PubMed ID: 25627719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibrinogen enhances the inflammatory response of alveolar macrophages to TiO2, SiO2 and carbon nanomaterials.
    Marucco A; Gazzano E; Ghigo D; Enrico E; Fenoglio I
    Nanotoxicology; 2016; 10(1):1-9. PubMed ID: 25395167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress in Delivery of Therapeutic and Imaging Agents Utilizing Organic-Inorganic Hybrid Nanoparticles.
    Haque ST; Chowdhury EH
    Curr Drug Deliv; 2018; 15(4):485-496. PubMed ID: 29165073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.