These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32194947)

  • 1. Extreme multiexciton emission from deterministically assembled single-emitter subwavelength plasmonic patch antennas.
    Dhawan AR; Belacel C; Esparza-Villa JU; Nasilowski M; Wang Z; Schwob C; Hugonin JP; Coolen L; Dubertret B; Senellart P; Maître A
    Light Sci Appl; 2020; 9():33. PubMed ID: 32194947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Efficient Single-Emitter Plasmonic Patch Antennas by Deterministic In Situ Optical Lithography using Spatially Modulated Light.
    Dhawan AR; Nasilowski M; Wang Z; Dubertret B; Maître A
    Adv Mater; 2022 Mar; 34(11):e2108120. PubMed ID: 34997657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes.
    Gong SH; Kim JH; Ko YH; Rodriguez C; Shin J; Lee YH; Dang le S; Zhang X; Cho YH
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5280-5. PubMed ID: 25870303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling spontaneous emission with plasmonic optical patch antennas.
    Belacel C; Habert B; Bigourdan F; Marquier F; Hugonin JP; de Vasconcellos SM; Lafosse X; Coolen L; Schwob C; Javaux C; Dubertret B; Greffet JJ; Senellart P; Maitre A
    Nano Lett; 2013 Apr; 13(4):1516-21. PubMed ID: 23461679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast spontaneous emission source using plasmonic nanoantennas.
    Hoang TB; Akselrod GM; Argyropoulos C; Huang J; Smith DR; Mikkelsen MH
    Nat Commun; 2015 Jul; 6():7788. PubMed ID: 26212857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beaming light from a quantum emitter with a planar optical antenna.
    Checcucci S; Lombardi P; Rizvi S; Sgrignuoli F; Gruhler N; Dieleman FB; S Cataliotti F; Pernice WH; Agio M; Toninelli C
    Light Sci Appl; 2017 Apr; 6(4):e16245. PubMed ID: 30167241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling Single Photons from Discrete Quantum Emitters in WSe
    Blauth M; Jürgensen M; Vest G; Hartwig O; Prechtl M; Cerne J; Finley JJ; Kaniber M
    Nano Lett; 2018 Nov; 18(11):6812-6819. PubMed ID: 30153417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Effect on Exciton and Multiexciton Emission of Single Quantum Dots.
    Dey S; Zhao J
    J Phys Chem Lett; 2016 Aug; 7(15):2921-9. PubMed ID: 27411778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna.
    Matsuzaki K; Vassant S; Liu HW; Dutschke A; Hoffmann B; Chen X; Christiansen S; Buck MR; Hollingsworth JA; Götzinger S; Sandoghdar V
    Sci Rep; 2017 Feb; 7():42307. PubMed ID: 28195140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single Photon Source from a Nanoantenna-Trapped Single Quantum Dot.
    Jiang Q; Roy P; Claude JB; Wenger J
    Nano Lett; 2021 Aug; 21(16):7030-7036. PubMed ID: 34398613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling a single solid-state quantum emitter to an array of resonant plasmonic antennas.
    Pfeiffer M; Atkinson P; Rastelli A; Schmidt OG; Giessen H; Lippitz M; Lindfors K
    Sci Rep; 2018 Feb; 8(1):3415. PubMed ID: 29467499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monolithically integrated single quantum dots coupled to bowtie nanoantennas.
    Lyamkina AA; Schraml K; Regler A; Schalk M; Bakarov AK; Toropov AI; Moshchenko SP; Kaniber M
    Opt Express; 2016 Dec; 24(25):28936-28944. PubMed ID: 27958558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic nanobar-on-mirror antenna with giant local chirality: a new platform for ultrafast chiral single-photon emission.
    Hu H; Chen W; Han X; Wang K; Lu P
    Nanoscale; 2022 Feb; 14(6):2287-2295. PubMed ID: 35081195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Nanocrystal Photoluminescence Spectroscopy Studies of Plasmon-Multiexciton Interactions at Low Temperature.
    Park YS; Ghosh Y; Xu P; Mack NH; Wang HL; Hollingsworth JA; Htoon H
    J Phys Chem Lett; 2013 May; 4(9):1465-70. PubMed ID: 26282300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of highly efficient metallo-dielectric patch antennas for single-photon emission.
    Bigourdan F; Marquier F; Hugonin JP; Greffet JJ
    Opt Express; 2014 Feb; 22(3):2337-47. PubMed ID: 24663526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of Cooperative Purcell Enhancements in Antenna-Cavity Hybrids.
    Doeleman HM; Dieleman CD; Mennes C; Ehrler B; Koenderink AF
    ACS Nano; 2020 Sep; 14(9):12027-12036. PubMed ID: 32870669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot.
    Ropp C; Cummins Z; Nah S; Fourkas JT; Shapiro B; Waks E
    Nat Commun; 2013; 4():1447. PubMed ID: 23385591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlated structural-optical study of single nanocrystals in a gap-bar antenna: effects of plasmonics on excitonic recombination pathways.
    Wang F; Karan NS; Nguyen HM; Ghosh Y; Sheehan CJ; Hollingsworth JA; Htoon H
    Nanoscale; 2015 Jun; 7(21):9387-93. PubMed ID: 25947939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging of Plasmonic Chiral Radiative Local Density of States with Cathodoluminescence Nanoscopy.
    Zu S; Han T; Jiang M; Liu Z; Jiang Q; Lin F; Zhu X; Fang Z
    Nano Lett; 2019 Feb; 19(2):775-780. PubMed ID: 30596507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.