These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32195100)

  • 1. Spontaneous Alignment of Graphene Oxide in Hydrogel during 3D Printing for Multistimuli-Responsive Actuation.
    Zhang M; Wang Y; Jian M; Wang C; Liang X; Niu J; Zhang Y
    Adv Sci (Weinh); 2020 Mar; 7(6):1903048. PubMed ID: 32195100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Printable Magnetic-Responsive Iron Oxide Nanoparticle (ION)-Gelatin Methacryloyl (GelMA) Ink for Soft Bioactuator/Robot Applications.
    Yang HW; Yeh NT; Chen TC; Yeh YC; Lee IC; Li YE
    Polymers (Basel); 2023 Dec; 16(1):. PubMed ID: 38201691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4D Printing of Glass Fiber-Regulated Shape Shifting Structures with High Stiffness.
    Weng S; Kuang X; Zhang Q; Hamel CM; Roach DJ; Hu N; Jerry Qi H
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12797-12804. PubMed ID: 33355461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of Cellulose Nanocrystal Alignment during 3D Printing.
    Hausmann MK; Rühs PA; Siqueira G; Läuger J; Libanori R; Zimmermann T; Studart AR
    ACS Nano; 2018 Jul; 12(7):6926-6937. PubMed ID: 29975510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printing Graphene Oxide Soft Robotics.
    Zhou GX; Yu YG; Yang ZH; Jia DC; Poulin P; Zhou Y; Zhong J
    ACS Nano; 2022 Mar; 16(3):3664-3673. PubMed ID: 35166113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel.
    Xavier Mendes A; Moraes Silva S; O'Connell CD; Duchi S; Quigley AF; Kapsa RMI; Moulton SE
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2279-2295. PubMed ID: 33956434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytically Initiated Gel-in-Gel Printing of Composite Hydrogels.
    Basu A; Saha A; Goodman C; Shafranek RT; Nelson A
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40898-40904. PubMed ID: 29091399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four-Dimensional Printing of Temperature-Responsive Liquid Crystal Elastomers with Programmable Shape-Changing Behavior.
    Li S; Song Z; Fan Y; Wei D; Liu Y
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37218782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Patterning and Spontaneous Self-Assembly of Graphene Oxide via Electrohydrodynamic Jet Printing for Energy Storage and Sensing.
    Zhang B; Lee J; Kim M; Lee N; Lee H; Byun D
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31861716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels.
    Fourmann O; Hausmann MK; Neels A; Schubert M; Nyström G; Zimmermann T; Siqueira G
    Carbohydr Polym; 2021 May; 259():117716. PubMed ID: 33673992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3D Printable and Mechanically Robust Hydrogel Based on Alginate and Graphene Oxide.
    Liu S; Bastola AK; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41473-41481. PubMed ID: 29116743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4D Printing of a Liquid Crystal Elastomer with a Controllable Orientation Gradient.
    Zhang C; Lu X; Fei G; Wang Z; Xia H; Zhao Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44774-44782. PubMed ID: 31692319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
    Kumar A; I Matari IA; Han SS
    Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible Shape-Shifting of an Ionic Strength Responsive Hydrogel Enabled by Programmable Network Anisotropy.
    Wen X; Zhang Y; Chen D; Zhao Q
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):40344-40350. PubMed ID: 36017981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Printing Structurally Anisotropic Biocompatible Fibrillar Hydrogel for Guided Cell Alignment.
    Chen Z; Khuu N; Xu F; Kheiri S; Yakavets I; Rakhshani F; Morozova S; Kumacheva E
    Gels; 2022 Oct; 8(11):. PubMed ID: 36354593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Printing of Polyaniline/Reduced Graphene Oxide Composite for High-Performance Planar Supercapacitor.
    Wang Z; Zhang QE; Long S; Luo Y; Yu P; Tan Z; Bai J; Qu B; Yang Y; Shi J; Zhou H; Xiao ZY; Hong W; Bai H
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10437-10444. PubMed ID: 29543426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable Anisotropic Hydrogel Composites for Soft Bioelectronics.
    Fu L; Gao T; Zhao W; Hu S; Liu L; Shi Z; Huang J
    Macromol Biosci; 2022 Jun; 22(6):e2100467. PubMed ID: 35083860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart Actuators and Adhesives for Reconfigurable Matter.
    Ko H; Javey A
    Acc Chem Res; 2017 Apr; 50(4):691-702. PubMed ID: 28263544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene Oxide: An All-in-One Processing Additive for 3D Printing.
    García-Tuñón E; Feilden E; Zheng H; D'Elia E; Leong A; Saiz E
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32977-32989. PubMed ID: 28898053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 4D Printing of Ultrastretchable Magnetoactive Soft Material Architectures for Soft Actuators.
    Wajahat M; Kim JH; Kim JH; Jung ID; Pyo J; Seol SK
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59582-59591. PubMed ID: 38100363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.