BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32195285)

  • 1. Comparative Proteomic Analysis of Two
    Liu Y; Yan C; Song Z; Zhou S
    Iran J Biotechnol; 2019 Sep; 17(3):e2219. PubMed ID: 32195285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in physiology and protein abundance in salt-stressed wheat chloroplasts.
    Kamal AH; Cho K; Kim DE; Uozumi N; Chung KY; Lee SY; Choi JS; Cho SW; Shin CS; Woo SH
    Mol Biol Rep; 2012 Sep; 39(9):9059-74. PubMed ID: 22736107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteomic analysis of salt-responsive proteins in canola roots by 2-DE and MALDI-TOF MS.
    Kholghi M; Toorchi M; Bandehagh A; Ostendorp A; Ostendorp S; Hanhart P; Kehr J
    Biochim Biophys Acta Proteins Proteom; 2019 Mar; 1867(3):227-236. PubMed ID: 30611781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manilkara zapota (L.) P. Royen leaf water extract triggered apoptosis and activated caspase-dependent pathway in HT-29 human colorectal cancer cell line.
    Tan BL; Norhaizan ME
    Biomed Pharmacother; 2019 Feb; 110():748-757. PubMed ID: 30554113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prenylated Coumarins from the Fruits of
    Liu YP; Yan G; Guo JM; Liu YY; Li YJ; Zhao YY; Qiang L; Fu YH
    J Agric Food Chem; 2019 Oct; 67(43):11942-11947. PubMed ID: 31622090
    [No Abstract]   [Full Text] [Related]  

  • 6. Proteome analysis of tobacco leaves under salt stress.
    Razavizadeh R; Ehsanpour AA; Ahsan N; Komatsu S
    Peptides; 2009 Sep; 30(9):1651-9. PubMed ID: 19573571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach.
    Ahsan N; Donnart T; Nouri MZ; Komatsu S
    J Proteome Res; 2010 Aug; 9(8):4189-204. PubMed ID: 20540562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteome analysis of soybean leaves, hypocotyls and roots under salt stress.
    Sobhanian H; Razavizadeh R; Nanjo Y; Ehsanpour AA; Jazii FR; Motamed N; Komatsu S
    Proteome Sci; 2010 Mar; 8():19. PubMed ID: 20350314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative proteomics and gene expression analyses revealed responsive proteins and mechanisms for salt tolerance in chickpea genotypes.
    Arefian M; Vessal S; Malekzadeh-Shafaroudi S; Siddique KHM; Bagheri A
    BMC Plant Biol; 2019 Jul; 19(1):300. PubMed ID: 31288738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative proteomic analysis of Pinellia ternata leaves exposed to heat stress.
    Zhu Y; Zhu G; Guo Q; Zhu Z; Wang C; Liu Z
    Int J Mol Sci; 2013 Oct; 14(10):20614-34. PubMed ID: 24132150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt-adaptive strategies in oil seed crop Ricinus communis early seedlings (cotyledon vs. true leaf) revealed from proteomics analysis.
    Wang Y; Peng X; Salvato F; Wang Y; Yan X; Zhou Z; Lin J
    Ecotoxicol Environ Saf; 2019 Apr; 171():12-25. PubMed ID: 30593996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid.
    Yıldız M; Akçalı N; Terzi H
    J Plant Physiol; 2015 May; 179():90-9. PubMed ID: 25841209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Proteomic Analysis Reveals the Regulatory Effects of H
    Liu YL; Shen ZJ; Simon M; Li H; Ma DN; Zhu XY; Zheng HL
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31878013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance.
    Xu C; Sibicky T; Huang B
    Plant Cell Rep; 2010 Jun; 29(6):595-615. PubMed ID: 20361191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress.
    Wang Y; Stevanato P; Yu L; Zhao H; Sun X; Sun F; Li J; Geng G
    J Plant Res; 2017 Nov; 130(6):1079-1093. PubMed ID: 28711996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UPLC-QTOF-MS/MS analysis and antibacterial activity of the Manilkara zapota (L.) P. Royen against Escherichia coli and other MDR bacteria.
    Freitas TS; Campina FF; Costa MS; Rocha JNE; Cruz RP; Pinheiro JCA; Pereira-Júnior FN; Lima MA; Pires de Sá MSFC; Teixeira AMR; Coutinho HDM
    Cell Mol Biol (Noisy-le-grand); 2021 Jan; 67(1):116-124. PubMed ID: 34817358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antidiabetic and antilipidemic effects of Manilkara zapota.
    Barbalho SM; Bueno PC; Delazari DS; Guiguer EL; Coqueiro DP; Araújo AC; de Souza Mda S; Farinazzi-Machado FM; Mendes CG; Groppo M
    J Med Food; 2015 Mar; 18(3):385-91. PubMed ID: 25184814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.
    Zhu Z; Chen J; Zheng HL
    Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic and phosphoproteomic analysis reveals the response and defense mechanism in leaves of diploid wheat T. monococcum under salt stress and recovery.
    Lv DW; Zhu GR; Zhu D; Bian YW; Liang XN; Cheng ZW; Deng X; Yan YM
    J Proteomics; 2016 Jun; 143():93-105. PubMed ID: 27095598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive proteomic analysis revealing multifaceted regulatory network of the xero-halophyte Haloxylon salicornicum involved in salt tolerance.
    Panda A; Rangani J; Parida AK
    J Biotechnol; 2020 Dec; 324():143-161. PubMed ID: 33068696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.