BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 32195521)

  • 1. A two-dimensional Ru@MXene catalyst for highly selective ambient electrocatalytic nitrogen reduction.
    Liu A; Gao M; Ren X; Meng F; Yang Y; Yang Q; Guan W; Gao L; Liang X; Ma T
    Nanoscale; 2020 May; 12(20):10933-10938. PubMed ID: 32195521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-dimensional MXene-supported metal-organic framework for highly selective ambient electrocatalytic nitrogen reduction.
    Liang X; Ren X; Yang Q; Gao L; Gao M; Yang Y; Zhu H; Li G; Ma T; Liu A
    Nanoscale; 2021 Feb; 13(5):2843-2848. PubMed ID: 33522552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions.
    Wang D; Azofra LM; Harb M; Cavallo L; Zhang X; Suryanto BHR; MacFarlane DR
    ChemSusChem; 2018 Oct; 11(19):3416-3422. PubMed ID: 30091299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Selective Electrochemical Reduction of Dinitrogen to Ammonia at Ambient Temperature and Pressure over Iron Oxide Catalysts.
    Cui X; Tang C; Liu XM; Wang C; Ma W; Zhang Q
    Chemistry; 2018 Dec; 24(69):18494-18501. PubMed ID: 29907981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial N
    Zhao L; Zhao J; Zhao J; Zhang L; Wu D; Wang H; Li J; Ren X; Wei Q
    Nanotechnology; 2020 May; 31(29):29LT01. PubMed ID: 32191924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Electrocatalytic Conversion of N
    Xu X; Sun B; Liang Z; Cui H; Tian J
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26060-26067. PubMed ID: 32419447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocatalytic Synthesis of Ammonia Using a 2D Ti
    Liu A; Liang X; Yang Q; Ren X; Gao M; Yang Y; Ma T
    Chempluschem; 2021 Jan; 86(1):166-170. PubMed ID: 33215874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MXene-Derived Nanocomposites as Earth-Abundant Efficient Electrocatalyst for Nitrogen Reduction Reaction under Ambient Conditions.
    Zhao G; Wang X; Xu C
    Inorg Chem; 2020 Nov; 59(22):16672-16678. PubMed ID: 33124801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of nitrogen atoms from Zif-8 structure deposited over Ti
    Marinho ALA; Comminges C; Habrioux A; Célérier S; Bion N; Morais C
    Chem Commun (Camb); 2023 Aug; 59(67):10133-10136. PubMed ID: 37501644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting electrocatalytic reduction of nitrogen to ammonia under ambient conditions by alloy engineering.
    Jin Y; Ding X; Zhang L; Cong M; Xu F; Wei Y; Hao S; Gao Y
    Chem Commun (Camb); 2020 Sep; 56(77):11477-11480. PubMed ID: 32856638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ag nanosheets for efficient electrocatalytic N
    Huang H; Xia L; Shi X; Asiri AM; Sun X
    Chem Commun (Camb); 2018 Oct; 54(81):11427-11430. PubMed ID: 30246829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable Production of Cobalt Phthalocyanine Nanotubes: Efficient and Robust Hollow Electrocatalyst for Ammonia Synthesis at Room Temperature.
    Ghorai UK; Paul S; Ghorai B; Adalder A; Kapse S; Thapa R; Nagendra A; Gain A
    ACS Nano; 2021 Mar; 15(3):5230-5239. PubMed ID: 33646739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Electrocatalytic N
    Wei X; Pu M; Jin Y; Wessling M
    ACS Appl Mater Interfaces; 2021 May; 13(18):21411-21425. PubMed ID: 33909402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrocatalytic Reduction of Nitrogen to Ammonia Using Tiara-like Phenylethanethiolated Nickel Cluster.
    Maman MP; Gurusamy T; Pal AK; Jana R; Ramanujam K; Datta A; Mandal S
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202305462. PubMed ID: 37129995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomass-derived oxygen-doped hollow carbon microtubes for electrocatalytic N
    Wu T; Li P; Wang H; Zhao R; Zhou Q; Kong W; Liu M; Zhang Y; Sun X; Gong FF
    Chem Commun (Camb); 2019 Feb; 55(18):2684-2687. PubMed ID: 30747174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple hydrothermal synthesis of an oxygen vacancy-rich MnMoO
    Yin H; Xing X; Zhang W; Li J; Xiong W; Li H
    Dalton Trans; 2023 Nov; 52(45):16670-16679. PubMed ID: 37916428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploration and Investigation of Periodic Elements for Electrocatalytic Nitrogen Reduction.
    Patil SB; Wang DY
    Small; 2020 Nov; 16(45):e2002885. PubMed ID: 32945097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired Electrocatalyst for Electrochemical Reduction of N
    Xian H; Guo H; Chen Z; Yu G; Alshehri AA; Alzahrani KA; Hao F; Song R; Li T
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2445-2451. PubMed ID: 31852178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-Based Metal-Free Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions.
    Zhao S; Lu X; Wang L; Gale J; Amal R
    Adv Mater; 2019 Mar; 31(13):e1805367. PubMed ID: 30648293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition Metal Aluminum Boride as a New Candidate for Ambient-Condition Electrochemical Ammonia Synthesis.
    Fu Y; Richardson P; Li K; Yu H; Yu B; Donne S; Kisi E; Ma T
    Nanomicro Lett; 2020 Feb; 12(1):65. PubMed ID: 34138306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.