These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 32195522)
1. A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. Zhao S; Wu M; Yang S; Wu Y; Gu Y; Chen C; Ye J; Xie Z; Tian Z; Bachman H; Huang PH; Xia J; Zhang P; Zhang H; Huang TJ Lab Chip; 2020 Apr; 20(7):1298-1308. PubMed ID: 32195522 [TBL] [Abstract][Full Text] [Related]
2. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner. Khan MS; Sahin MA; Destgeer G; Park J Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893 [TBL] [Abstract][Full Text] [Related]
3. The complexity of surface acoustic wave fields used for microfluidic applications. Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142 [TBL] [Abstract][Full Text] [Related]
4. Optimization Analysis of Particle Separation Parameters for a Standing Surface Acoustic Wave Acoustofluidic Chip. Han J; Hu H; Lei Y; Huang Q; Fu C; Gai C; Ning J ACS Omega; 2023 Jan; 8(1):311-323. PubMed ID: 36643460 [TBL] [Abstract][Full Text] [Related]
5. Acoustofluidic coating of particles and cells. Ayan B; Ozcelik A; Bachman H; Tang SY; Xie Y; Wu M; Li P; Huang TJ Lab Chip; 2016 Nov; 16(22):4366-4372. PubMed ID: 27754503 [TBL] [Abstract][Full Text] [Related]
6. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave. Ma Z; Collins DJ; Ai Y Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552 [TBL] [Abstract][Full Text] [Related]
7. An enhanced tilted-angle acoustic tweezer for mechanical phenotyping of cancer cells. Wang H; Boardman J; Zhang X; Sun C; Cai M; Wei J; Dong Z; Feng M; Liang D; Hu S; Qian Y; Dong S; Fu Y; Torun H; Clayton A; Wu Z; Xie Z; Yang X Anal Chim Acta; 2023 May; 1255():341120. PubMed ID: 37032048 [TBL] [Abstract][Full Text] [Related]
8. Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects. Kang P; Tian Z; Yang S; Yu W; Zhu H; Bachman H; Zhao S; Zhang P; Wang Z; Zhong R; Huang TJ Lab Chip; 2020 Mar; 20(5):987-994. PubMed ID: 32010910 [TBL] [Abstract][Full Text] [Related]
9. Acoustic streaming of microparticles using graphene-based interdigital transducers. Mišeikis V; Shilton RJ; Travagliati M; Agostini M; Cecchini M; Piazza V; Coletti C Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 34030151 [TBL] [Abstract][Full Text] [Related]
10. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles. Ahmed H; Destgeer G; Park J; Jung JH; Ahmad R; Park K; Sung HJ Anal Chem; 2017 Dec; 89(24):13575-13581. PubMed ID: 29156880 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves. Xu M; Lee PVS; Collins DJ Lab Chip; 2021 Dec; 22(1):90-99. PubMed ID: 34860222 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave. Liu X; Zheng T; Wang C Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304 [TBL] [Abstract][Full Text] [Related]
13. Surface acoustic wave manipulation of bioparticles. Qi M; Dang D; Yang X; Wang J; Zhang H; Liang W Soft Matter; 2023 Jun; 19(23):4166-4187. PubMed ID: 37212436 [TBL] [Abstract][Full Text] [Related]
14. Microparticle Manipulation by Standing Surface Acoustic Waves with Dual-frequency Excitations. Zhou Y; Sriphutkiat Y J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199023 [TBL] [Abstract][Full Text] [Related]
16. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I. Sachs S; Baloochi M; Cierpka C; König J Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303 [TBL] [Abstract][Full Text] [Related]
17. Development and characterisation of acoustofluidic devices using detachable electrodes made from PCB. Mikhaylov R; Wu F; Wang H; Clayton A; Sun C; Xie Z; Liang D; Dong Y; Yuan F; Moschou D; Wu Z; Shen MH; Yang J; Fu Y; Yang Z; Burton C; Errington RJ; Wiltshire M; Yang X Lab Chip; 2020 May; 20(10):1807-1814. PubMed ID: 32319460 [TBL] [Abstract][Full Text] [Related]
18. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing. Rasouli R; Villegas KM; Tabrizian M Lab Chip; 2023 Mar; 23(5):1300-1338. PubMed ID: 36806847 [TBL] [Abstract][Full Text] [Related]
19. Current Development in Interdigital Transducer (IDT) Surface Acoustic Wave Devices for Live Cell In Vitro Studies: A Review. Mazalan MB; Noor AM; Wahab Y; Yahud S; Zaman WSWK Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056195 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Shi J; Yazdi S; Lin SC; Ding X; Chiang IK; Sharp K; Huang TJ Lab Chip; 2011 Jul; 11(14):2319-24. PubMed ID: 21709881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]