These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32195522)

  • 21. Acoustofluidic Stimulation of Functional Immune Cells in a Microreactor.
    Kim S; Nam H; Cha B; Park J; Sung HJ; Jeon JS
    Adv Sci (Weinh); 2022 Jun; 9(16):2105809. PubMed ID: 35686137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acoustofluidic separation of proteins from platelets in human blood plasma using aptamer-functionalized microparticles.
    Lee SH; Cha B; Ko J; Afzal M; Park J
    Biomicrofluidics; 2023 Mar; 17(2):024105. PubMed ID: 37153865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measuring Velocity, Attenuation, and Reflection in Surface Acoustic Wave Cavities Through Acoustic Fabry-Pérot Spectra.
    Kelly L; Berini P; Bao X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1542-1548. PubMed ID: 35081023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acoustofluidic multi-well plates for enrichment of micro/nano particles and cells.
    Liu P; Tian Z; Hao N; Bachman H; Zhang P; Hu J; Huang TJ
    Lab Chip; 2020 Sep; 20(18):3399-3409. PubMed ID: 32779677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detachable acoustofluidic droplet-sorter.
    Das D; Huang SH; Weng CL; Yu CH; Hsu CK; Lee YC; Cheng HC; Chuang HS
    Anal Chim Acta; 2024 Sep; 1321():343043. PubMed ID: 39155105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acoustofluidic bacteria separation.
    Li S; Ma F; Bachman H; Cameron CE; Zeng X; Huang TJ
    J Micromech Microeng; 2017 Jan; 27(1):. PubMed ID: 28798539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
    Kim U; Oh B; Ahn J; Lee S; Cho Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plastic-based acoustofluidic devices for high-throughput, biocompatible platelet separation.
    Gu Y; Chen C; Wang Z; Huang PH; Fu H; Wang L; Wu M; Chen Y; Gao T; Gong J; Kwun J; Arepally GM; Huang TJ
    Lab Chip; 2019 Jan; 19(3):394-402. PubMed ID: 30631874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
    Ding X; Lin SC; Kiraly B; Yue H; Li S; Chiang IK; Shi J; Benkovic SJ; Huang TJ
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11105-9. PubMed ID: 22733731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal considerations for microswimmer trap-and-release using standing surface acoustic waves.
    Cui M; Kim M; Weisensee PB; Meacham JM
    Lab Chip; 2021 Jun; 21(13):2534-2543. PubMed ID: 33998632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acoustofluidic precise manipulation: Recent advances in applications for micro/nano bioparticles.
    Li W; Yao Z; Ma T; Ye Z; He K; Wang L; Wang H; Fu Y; Xu X
    Adv Colloid Interface Sci; 2024 Oct; 332():103276. PubMed ID: 39146580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and simulation of a microfluidic device for acoustic cell separation.
    Shamloo A; Boodaghi M
    Ultrasonics; 2018 Mar; 84():234-243. PubMed ID: 29175517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Practical microcircuits for handheld acoustofluidics.
    Huang A; Connacher W; Stambaugh M; Zhang N; Zhang S; Mei J; Jain A; Alluri S; Leung V; Rajapaksa AE; Friend J
    Lab Chip; 2021 Apr; 21(7):1352-1363. PubMed ID: 33565534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustophoretic Control of Microparticle Transport Using Dual-Wavelength Surface Acoustic Wave Devices.
    Hsu JC; Hsu CH; Huang YW
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30642118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustofluidic Separation of Proteins Using Aptamer-Functionalized Microparticles.
    Afzal M; Park J; Jeon JS; Akmal M; Yoon TS; Sung HJ
    Anal Chem; 2021 Jun; 93(23):8309-8317. PubMed ID: 34075739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-throughput and directed microparticle manipulation in complex-shaped maze chambers based on travelling surface acoustic waves.
    Weng W; Pan H; Wang Y
    Analyst; 2022 Nov; 147(22):4962-4970. PubMed ID: 36255404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reusable acoustic tweezers for disposable devices.
    Guo F; Xie Y; Li S; Lata J; Ren L; Mao Z; Ren B; Wu M; Ozcelik A; Huang TJ
    Lab Chip; 2015 Dec; 15(24):4517-23. PubMed ID: 26507411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High performance isolation of circulating tumor cells by acoustofluidic chip coupled with ultrasonic concentrated energy transducer.
    Qiu H; Wang H; Yang X; Huo F
    Colloids Surf B Biointerfaces; 2023 Feb; 222():113138. PubMed ID: 36638753
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nebulisation on a disposable array structured with phononic lattices.
    Reboud J; Wilson R; Zhang Y; Ismail MH; Bourquin Y; Cooper JM
    Lab Chip; 2012 Apr; 12(7):1268-73. PubMed ID: 22327572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics.
    Chen C; Zhang SP; Mao Z; Nama N; Gu Y; Huang PH; Jing Y; Guo X; Costanzo F; Huang TJ
    Lab Chip; 2018 Dec; 18(23):3645-3654. PubMed ID: 30361727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.