BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32195541)

  • 1. ACE-domain selectivity extends beyond direct interacting residues at the active site.
    Cozier GE; Lubbe L; Sturrock ED; Acharya KR
    Biochem J; 2020 Apr; 477(7):1241-1259. PubMed ID: 32195541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of angiotensin converting enzyme mutations on the kinetics and dynamics of N-domain selective inhibition.
    Lubbe L; Sewell BT; Sturrock ED
    FEBS J; 2016 Nov; 283(21):3941-3961. PubMed ID: 27636235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angiotensin-converting enzyme open for business: structural insights into the subdomain dynamics.
    Cozier GE; Lubbe L; Sturrock ED; Acharya KR
    FEBS J; 2021 Apr; 288(7):2238-2256. PubMed ID: 33067882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Structural Biology of ACE and Development of Domain Selective ACE-inhibitors.
    Polakovičová M; Jampílek J
    Med Chem; 2019; 15(6):574-587. PubMed ID: 31084594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Basis for Multiple Omapatrilat Binding Sites within the ACE C-Domain: Implications for Drug Design.
    Cozier GE; Arendse LB; Schwager SL; Sturrock ED; Acharya KR
    J Med Chem; 2018 Nov; 61(22):10141-10154. PubMed ID: 30372620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the C-domain-selective angiotensin-converting enzyme inhibition by bradykinin-potentiating peptide b (BPPb).
    Sturrock ED; Lubbe L; Cozier GE; Schwager SLU; Arowolo AT; Arendse LB; Belcher E; Acharya KR
    Biochem J; 2019 May; 476(10):1553-1570. PubMed ID: 31072910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of sampatrilat and sampatrilat-Asp in complex with human ACE - a molecular basis for domain selectivity.
    Cozier GE; Schwager SL; Sharma RK; Chibale K; Sturrock ED; Acharya KR
    FEBS J; 2018 Apr; 285(8):1477-1490. PubMed ID: 29476645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of testis angiotensin-converting enzyme in complex with the C domain-specific inhibitor RXPA380.
    Corradi HR; Chitapi I; Sewell BT; Georgiadis D; Dive V; Sturrock ED; Acharya KR
    Biochemistry; 2007 May; 46(18):5473-8. PubMed ID: 17439247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the Requirements for Dual Angiotensin-Converting Enzyme C-Domain Selective/Neprilysin Inhibition.
    Arendse LB; Cozier GE; Eyermann CJ; Basarab GS; Schwager SL; Chibale K; Acharya KR; Sturrock ED
    J Med Chem; 2022 Feb; 65(4):3371-3387. PubMed ID: 35113565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Dynamic Nonprime Binding of Sampatrilat to the C-Domain of Angiotensin-Converting Enzyme.
    Sharma RK; Espinoza-Moraga M; Poblete H; Douglas RG; Sturrock ED; Caballero J; Chibale K
    J Chem Inf Model; 2016 Dec; 56(12):2486-2494. PubMed ID: 27959521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Considerations for Docking of Selective Angiotensin-Converting Enzyme Inhibitors.
    Caballero J
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31940798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of highly specific phosphinic tripeptide enantiomers in complex with the angiotensin-I converting enzyme.
    Masuyer G; Akif M; Czarny B; Beau F; Schwager SL; Sturrock ED; Isaac RE; Dive V; Acharya KR
    FEBS J; 2014 Feb; 281(3):943-56. PubMed ID: 24289879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into the inhibitory mechanism of angiotensin-I-converting enzyme by the lactotripeptides IPP and VPP.
    Gregory KS; Cozier GE; Schwager SLU; Sturrock ED; Acharya KR
    FEBS Lett; 2024 Jan; 598(2):242-251. PubMed ID: 37904282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic and structural characterization of amyloid-β peptide hydrolysis by human angiotensin-1-converting enzyme.
    Larmuth KM; Masuyer G; Douglas RG; Schwager SL; Acharya KR; Sturrock ED
    FEBS J; 2016 Mar; 283(6):1060-76. PubMed ID: 26748546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming Non-Selective Angiotensin-Converting Enzyme Inhibitors in C- and N-domain Selective Inhibitors by Using Computational Tools.
    Alfaro S; Navarro-Retamal C; Caballero J
    Mini Rev Med Chem; 2020; 20(14):1436-1446. PubMed ID: 31889494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of domain-selective inhibitor binding in angiotensin-converting enzyme using a novel derivative of lisinopril.
    Watermeyer JM; Kröger WL; O'Neill HG; Sewell BT; Sturrock ED
    Biochem J; 2010 Apr; 428(1):67-74. PubMed ID: 20233165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic probes for inter-domain co-operation in human somatic angiotensin-converting enzyme.
    Skirgello OE; Binevski PV; Pozdnev VF; Kost OA
    Biochem J; 2005 Nov; 391(Pt 3):641-7. PubMed ID: 16033330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for the inhibition of human angiotensin-1 converting enzyme by fosinoprilat.
    Cozier GE; Newby EC; Schwager SLU; Isaac RE; Sturrock ED; Acharya KR
    FEBS J; 2022 Nov; 289(21):6659-6671. PubMed ID: 35653492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide inhibitors of angiotensin-I converting enzyme based on angiotensin (1-7) with selectivity for the C-terminal domain.
    da Silva RL; Papakyriakou A; Carmona AK; Spyroulias GA; Sturrock ED; Bersanetti PA; Nakaie CR
    Bioorg Chem; 2022 Dec; 129():106204. PubMed ID: 36306699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural determinants of RXPA380, a potent and highly selective inhibitor of the angiotensin-converting enzyme C-domain.
    Georgiadis D; Cuniasse P; Cotton J; Yiotakis A; Dive V
    Biochemistry; 2004 Jun; 43(25):8048-54. PubMed ID: 15209500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.