These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 32195581)
1. Molecular Mechanisms of Chromium(III) Immobilization by Organo-Ferrihydrite Co-precipitates: The Significant Roles of Ferrihydrite and Carboxyl. Yang J; Xia X; Liu J; Wang J; Hu Y Environ Sci Technol; 2020 Apr; 54(8):4820-4828. PubMed ID: 32195581 [TBL] [Abstract][Full Text] [Related]
2. Molecular Sorption Mechanisms of Cr(III) to Organo-Ferrihydrite Coprecipitates Using Synchrotron-Based EXAFS and STXM Techniques. Xia X; Yang J; Yan Y; Wang J; Hu Y; Zeng X Environ Sci Technol; 2020 Oct; 54(20):12989-12997. PubMed ID: 32915555 [TBL] [Abstract][Full Text] [Related]
3. Molecular mechanisms of Chromium(III) sorption by organo-ferrihydrite coprecipitates induced by crop straws. Jin L; Xia X; He C; Darma AI; Hu Y; Shakouri M; Yang J Chemosphere; 2022 Dec; 308(Pt 2):136398. PubMed ID: 36096304 [TBL] [Abstract][Full Text] [Related]
4. Molecular Insights into Roles of Dissolved Organic Matter in Cr(III) Immobilization by Coprecipitation with Fe(III) Probed by STXM-Ptychography and XANES Spectroscopy. Xia X; Wang J; Hu Y; Liu J; Darma AI; Jin L; Han H; He C; Yang J Environ Sci Technol; 2022 Feb; 56(4):2432-2442. PubMed ID: 35109654 [TBL] [Abstract][Full Text] [Related]
5. Organic Matter Counteracts the Enhancement of Cr(III) Extractability during the Fe(II)-Catalyzed Ferrihydrite Transformation: A Nanoscale- and Molecular-Level Investigation. Xia X; Liu J; Jin L; Wang J; Darma AI; He C; Shakouri M; Hu Y; Yang J Environ Sci Technol; 2023 Sep; 57(36):13496-13505. PubMed ID: 37638663 [TBL] [Abstract][Full Text] [Related]
6. A XAFS study of plain and composite iron(III) and chromium(III) hydroxides. Papassiopi N; Pinakidou F; Katsikini M; Antipas GS; Christou C; Xenidis A; Paloura EC Chemosphere; 2014 Sep; 111():169-76. PubMed ID: 24997915 [TBL] [Abstract][Full Text] [Related]
7. Arsenic(III) sorption on organo-ferrihydrite coprecipitates: Insights from maize and rape straw-derived DOM. Darma A; Liu Y; Xia X; Wang Y; Jin L; Yang J Chemosphere; 2024 Mar; 352():141372. PubMed ID: 38311036 [TBL] [Abstract][Full Text] [Related]
8. Phosphorus K-edge XANES spectroscopy has probably often underestimated iron oxyhydroxide-bound P in soils. Prietzel J; Klysubun W J Synchrotron Radiat; 2018 Nov; 25(Pt 6):1736-1744. PubMed ID: 30407184 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the spectroscopic speciation and chemical fractionation of chromium in contaminated paddy soils. Hsu LC; Liu YT; Tzou YM J Hazard Mater; 2015 Oct; 296():230-238. PubMed ID: 25935296 [TBL] [Abstract][Full Text] [Related]
10. Chromium(VI) formation via heating of Cr(III)-Fe(III)-(oxy)hydroxides: A pathway for fire-induced soil pollution. Burton ED; Choppala G; Vithana CL; Karimian N; Hockmann K; Johnston SG Chemosphere; 2019 May; 222():440-444. PubMed ID: 30716546 [TBL] [Abstract][Full Text] [Related]
11. Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution. Mamun AA; Morita M; Matsuoka M; Tokoro C J Hazard Mater; 2017 Jul; 334():142-149. PubMed ID: 28407541 [TBL] [Abstract][Full Text] [Related]
12. Mechanistic insights into the detoxification of Cr(VI) and immobilization of Cr and C during the biotransformation of ferrihydrite-polygalacturonic acid-Cr coprecipitates. Zhang H; Lu Y; Ouyang Z; Zhou W; Shen X; Gao K; Chen S; Yang Y; Hu S; Liu C J Hazard Mater; 2023 Apr; 448():130726. PubMed ID: 36736211 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional transfer of Cr(VI) co-precipitated with ferrihydrite containing silicate and its redistribution and retention during aging. Zhu L; Fu F; Tang B Sci Total Environ; 2019 Dec; 696():133966. PubMed ID: 31461693 [TBL] [Abstract][Full Text] [Related]
14. New insights on Cr(VI) retention by ferrihydrite in the presence of Fe(II). Hu Y; Xue Q; Tang J; Fan X; Chen H Chemosphere; 2019 May; 222():511-516. PubMed ID: 30721809 [TBL] [Abstract][Full Text] [Related]
15. Differential transformation mechanisms of exotic Cr(VI) in agricultural soils with contrasting physio-chemical and biological properties. Wang Y; Yang J; Han H; Hu Y; Wang J; Feng Y; Yu B; Xia X; Darma A Chemosphere; 2021 Sep; 279():130546. PubMed ID: 33894520 [TBL] [Abstract][Full Text] [Related]
16. Behavior and Fate of Chromium and Carbon during Fe(II)-Induced Transformation of Ferrihydrite Organominerals. Zhao Y; Moore OW; Xiao KQ; Otero-Fariña A; Banwart SA; Wu FC; Peacock CL Environ Sci Technol; 2023 Nov; 57(45):17501-17510. PubMed ID: 37921659 [TBL] [Abstract][Full Text] [Related]
17. Removal and simultaneous reduction of Cr(VI) by organo-Fe(III) composites produced during coprecipitation and coagulation processes. Chen KY; Tzou YM; Chan YT; Wu JJ; Teah HY; Liu YT J Hazard Mater; 2019 Aug; 376():12-20. PubMed ID: 31100491 [TBL] [Abstract][Full Text] [Related]
18. Sorption of phosphate and Cr(VI) by Fe(III) and Cr(III) hydroxides. Tzou YM; Wang MK; Loeppert RH Arch Environ Contam Toxicol; 2003 May; 44(4):445-53. PubMed ID: 12712274 [TBL] [Abstract][Full Text] [Related]
19. Reduction and immobilization of chromium(VI) by iron(II)-treated faujasite. Kiser JR; Manning BA J Hazard Mater; 2010 Feb; 174(1-3):167-74. PubMed ID: 19796874 [TBL] [Abstract][Full Text] [Related]
20. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides. Whitaker AH; Peña J; Amor M; Duckworth OW Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]