These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32195631)

  • 61. Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park.
    Parkes O; Lettieri P; Bogle ID
    Waste Manag; 2015 Jun; 40():157-66. PubMed ID: 25837786
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A correction in the CDM methodological tool for estimating methane emissions from solid waste disposal sites.
    Santos MM; van Elk AG; Romanel C
    J Environ Manage; 2015 Dec; 164():151-60. PubMed ID: 26363977
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A review of groundwater contamination near municipal solid waste landfill sites in China.
    Han Z; Ma H; Shi G; He L; Wei L; Shi Q
    Sci Total Environ; 2016 Nov; 569-570():1255-1264. PubMed ID: 27387811
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities.
    Gutiérrez-Gutiérrez SC; Coulon F; Jiang Y; Wagland S
    Waste Manag; 2015 Aug; 42():128-36. PubMed ID: 25957938
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Charging for municipal solid waste disposal in Beijing.
    Chu Z; Wang W; Zhou A; Huang WC
    Waste Manag; 2019 Jul; 94():85-94. PubMed ID: 31279399
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Performance and completion assessment of an in-situ aerated municipal solid waste landfill - Final scientific documentation of an Austrian case study.
    Hrad M; Huber-Humer M
    Waste Manag; 2017 May; 63():397-409. PubMed ID: 27567132
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Environmental impacts and benefits of state-of-the-art technologies for E-waste management.
    Ikhlayel M
    Waste Manag; 2017 Oct; 68():458-474. PubMed ID: 28662843
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Carbon footprint associated with four disposal scenarios for urban pruning waste.
    Araújo YRV; de Góis ML; Junior LMC; Carvalho M
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1863-1868. PubMed ID: 29103114
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The mass flow and proposed management of bisphenol A in selected Norwegian waste streams.
    Arp HPH; Morin NAO; Hale SE; Okkenhaug G; Breivik K; Sparrevik M
    Waste Manag; 2017 Feb; 60():775-785. PubMed ID: 28094158
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The potential for aeration of MSW landfills to accelerate completion.
    Rich C; Gronow J; Voulvoulis N
    Waste Manag; 2008; 28(6):1039-48. PubMed ID: 17531464
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout.
    Colazo AB; Sánchez A; Font X; Colón J
    Waste Manag; 2015 Sep; 43():84-97. PubMed ID: 26123979
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An environmental assessment model of construction and demolition waste based on system dynamics: a case study in Guangzhou.
    Liu J; Liu Y; Wang X
    Environ Sci Pollut Res Int; 2020 Oct; 27(30):37237-37259. PubMed ID: 31893359
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Investigations on fine fraction of aged municipal solid waste recovered through landfill mining: Case study of three dumpsites from India.
    Somani M; Datta M; Ramana GV; Sreekrishnan TR
    Waste Manag Res; 2018 Aug; 36(8):744-755. PubMed ID: 29939108
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste.
    Wimmer B; Hrad M; Huber-Humer M; Watzinger A; Wyhlidal S; Reichenauer TG
    Waste Manag; 2013 Oct; 33(10):2083-90. PubMed ID: 23540355
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Integrated assessment of a new Waste-to-Energy facility in Central Greece in the context of regional perspectives.
    Perkoulidis G; Papageorgiou A; Karagiannidis A; Kalogirou S
    Waste Manag; 2010 Jul; 30(7):1395-406. PubMed ID: 20061131
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A survey of municipal solid waste landfills in Beijing during 2009-2011.
    Liu X; Fu H; Jiang H; Shao Y; Wu X; Li Z
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20286-20296. PubMed ID: 31098912
    [TBL] [Abstract][Full Text] [Related]  

  • 77. 3D geophysical imaging for site-specific characterization plan of an old landfill.
    Di Maio R; Fais S; Ligas P; Piegari E; Raga R; Cossu R
    Waste Manag; 2018 Jun; 76():629-642. PubMed ID: 29523455
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion.
    Hrad M; Gamperling O; Huber-Humer M
    Waste Manag; 2013 Oct; 33(10):2061-73. PubMed ID: 23428564
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Life cycle assessment of the waste hierarchy--a Danish case study on waste paper.
    Schmidt JH; Holm P; Merrild A; Christensen P
    Waste Manag; 2007; 27(11):1519-30. PubMed ID: 17112716
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.
    Yang N; Zhang H; Shao LM; Lü F; He PJ
    J Environ Manage; 2013 Nov; 129():510-21. PubMed ID: 24018116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.