BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32196066)

  • 21. IGESS: a statistical approach to integrating individual-level genotype data and summary statistics in genome-wide association studies.
    Dai M; Ming J; Cai M; Liu J; Yang C; Wan X; Xu Z
    Bioinformatics; 2017 Sep; 33(18):2882-2889. PubMed ID: 28498950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-throughput and efficient multilocus genome-wide association study on longitudinal outcomes.
    Xu H; Li X; Yang Y; Li Y; Pinheiro J; Sasser K; Hamadeh H; Steven X; Yuan M;
    Bioinformatics; 2020 May; 36(10):3004-3010. PubMed ID: 32096821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clustering by genetic ancestry using genome-wide SNP data.
    Solovieff N; Hartley SW; Baldwin CT; Perls TT; Steinberg MH; Sebastiani P
    BMC Genet; 2010 Dec; 11():108. PubMed ID: 21143920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast and accurate out-of-core PCA framework for large scale biobank data.
    Li Z; Meisner J; Albrechtsen A
    Genome Res; 2023 Sep; 33(9):1599-1608. PubMed ID: 37620119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast principal component analysis of large-scale genome-wide data.
    Abraham G; Inouye M
    PLoS One; 2014; 9(4):e93766. PubMed ID: 24718290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GWAlpha: genome-wide estimation of additive effects (alpha) based on trait quantile distribution from pool-sequencing experiments.
    Fournier-Level A; Robin C; Balding DJ
    Bioinformatics; 2017 Apr; 33(8):1246-1247. PubMed ID: 28003266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient multivariate analysis algorithms for longitudinal genome-wide association studies.
    Ning C; Wang D; Zhou L; Wei J; Liu Y; Kang H; Zhang S; Zhou X; Xu S; Liu JF
    Bioinformatics; 2019 Dec; 35(23):4879-4885. PubMed ID: 31070732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast and accurate imputation of summary statistics enhances evidence of functional enrichment.
    Pasaniuc B; Zaitlen N; Shi H; Bhatia G; Gusev A; Pickrell J; Hirschhorn J; Strachan DP; Patterson N; Price AL
    Bioinformatics; 2014 Oct; 30(20):2906-14. PubMed ID: 24990607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. miniMDS: 3D structural inference from high-resolution Hi-C data.
    Rieber L; Mahony S
    Bioinformatics; 2017 Jul; 33(14):i261-i266. PubMed ID: 28882003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using the UK Biobank as a global reference of worldwide populations: application to measuring ancestry diversity from GWAS summary statistics.
    Privé F
    Bioinformatics; 2022 Jun; 38(13):3477-3480. PubMed ID: 35604078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SALAI-Net: species-agnostic local ancestry inference network.
    Oriol Sabat B; Mas Montserrat D; Giro-I-Nieto X; Ioannidis AG
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii27-ii33. PubMed ID: 36124792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS.
    Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sputnik: ad hoc distributed computation.
    Völkel G; Lausser L; Schmid F; Kraus JM; Kestler HA
    Bioinformatics; 2015 Apr; 31(8):1298-301. PubMed ID: 25505087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CscoreTool: fast Hi-C compartment analysis at high resolution.
    Zheng X; Zheng Y
    Bioinformatics; 2018 May; 34(9):1568-1570. PubMed ID: 29244056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computation of ancestry scores with mixed families and unrelated individuals.
    Zhou YH; Marron JS; Wright FA
    Biometrics; 2018 Mar; 74(1):155-164. PubMed ID: 28452052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interrogating local population structure for fine mapping in genome-wide association studies.
    Qin H; Morris N; Kang SJ; Li M; Tayo B; Lyon H; Hirschhorn J; Cooper RS; Zhu X
    Bioinformatics; 2010 Dec; 26(23):2961-8. PubMed ID: 20889494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Principal metabolic flux mode analysis.
    Bhadra S; Blomberg P; Castillo S; Rousu J
    Bioinformatics; 2018 Jul; 34(14):2409-2417. PubMed ID: 29420676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. sBWT: memory efficient implementation of the hardware-acceleration-friendly Schindler transform for the fast biological sequence mapping.
    Chang CH; Chou MT; Wu YC; Hong TW; Li YL; Yang CH; Hung JH
    Bioinformatics; 2016 Nov; 32(22):3498-3500. PubMed ID: 27412087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Benchmarking principal component analysis for large-scale single-cell RNA-sequencing.
    Tsuyuzaki K; Sato H; Sato K; Nikaido I
    Genome Biol; 2020 Jan; 21(1):9. PubMed ID: 31955711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SMSSVD: SubMatrix Selection Singular Value Decomposition.
    Henningsson R; Fontes M
    Bioinformatics; 2019 Feb; 35(3):478-486. PubMed ID: 30010791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.