These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 32196142)
1. Massively Multiplexed Submicron Particle Patterning in Acoustically Driven Oscillating Nanocavities. Tayebi M; O'Rorke R; Wong HC; Low HY; Han J; Collins DJ; Ai Y Small; 2020 Apr; 16(17):e2000462. PubMed ID: 32196142 [TBL] [Abstract][Full Text] [Related]
2. Submicron Particle Concentration and Patterning with Ultralow Frequency Acoustic Vibration. Zhou Y; Ma Z; Ai Y Anal Chem; 2020 Oct; 92(19):12795-12800. PubMed ID: 32894949 [TBL] [Abstract][Full Text] [Related]
3. Self-Aligned Acoustofluidic Particle Focusing and Patterning in Microfluidic Channels from Channel-Based Acoustic Waveguides. Collins DJ; O'Rorke R; Devendran C; Ma Z; Han J; Neild A; Ai Y Phys Rev Lett; 2018 Feb; 120(7):074502. PubMed ID: 29542954 [TBL] [Abstract][Full Text] [Related]
4. Phase separation of a nonionic surfactant aqueous solution in a standing surface acoustic wave for submicron particle manipulation. Zhao L; Niu P; Casals E; Zeng M; Wu C; Yang Y; Sun S; Zheng Z; Wang Z; Ning Y; Duan X; Pang W Lab Chip; 2021 Feb; 21(4):660-667. PubMed ID: 33393566 [TBL] [Abstract][Full Text] [Related]
6. Capillary-based, multifunctional manipulation of particles and fluids Pei Z; Tian Z; Yang S; Shen L; Hao N; Naquin TD; Li T; Sun L; Rong W; Huang TJ J Phys D Appl Phys; 2024 Aug; 57(30):. PubMed ID: 38800708 [TBL] [Abstract][Full Text] [Related]
7. Acoustic Manipulation of Bio-Particles at High Frequencies: An Analytical and Simulation Approach. Samandari M; Abrinia K; Sanati-Nezhad A Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400480 [TBL] [Abstract][Full Text] [Related]
8. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. Collins DJ; Ma Z; Han J; Ai Y Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136 [TBL] [Abstract][Full Text] [Related]
9. Investigation on submicron particle separation and deflection using tilted-angle standing surface acoustic wave microfluidics. Peng T; Lin X; Li L; Huang L; Jiang B; Jia Y Heliyon; 2024 Feb; 10(3):e25042. PubMed ID: 38322952 [TBL] [Abstract][Full Text] [Related]
10. Acoustic fields and microfluidic patterning around embedded micro-structures subject to surface acoustic waves. Collins DJ; O'Rorke R; Neild A; Han J; Ai Y Soft Matter; 2019 Nov; 15(43):8691-8705. PubMed ID: 31657435 [TBL] [Abstract][Full Text] [Related]
11. Fully Microfabricated Surface Acoustic Wave Tweezer for Collection of Submicron Particles and Human Blood Cells. Fakhfouri A; Colditz M; Devendran C; Ivanova K; Jacob S; Neild A; Winkler A ACS Appl Mater Interfaces; 2023 May; 15(20):24023-24033. PubMed ID: 37188328 [TBL] [Abstract][Full Text] [Related]
12. Acoustofluidics 17: theory and applications of surface acoustic wave devices for particle manipulation. Gedge M; Hill M Lab Chip; 2012 Sep; 12(17):2998-3007. PubMed ID: 22842855 [TBL] [Abstract][Full Text] [Related]
13. Diffraction-based acoustic manipulation in microchannels enables continuous particle and bacteria focusing. Devendran C; Choi K; Han J; Ai Y; Neild A; Collins DJ Lab Chip; 2020 Aug; 20(15):2674-2688. PubMed ID: 32608464 [TBL] [Abstract][Full Text] [Related]
14. Radiation dominated acoustophoresis driven by surface acoustic waves. Guo J; Kang Y; Ai Y J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191 [TBL] [Abstract][Full Text] [Related]
15. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields. Collins DJ; Ma Z; Ai Y Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956 [TBL] [Abstract][Full Text] [Related]
16. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part II. Sachs S; Cierpka C; König J Lab Chip; 2022 May; 22(10):2028-2040. PubMed ID: 35485185 [TBL] [Abstract][Full Text] [Related]
17. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Destgeer G; Sung HJ Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538 [TBL] [Abstract][Full Text] [Related]
18. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves. Collins DJ; Devendran C; Ma Z; Ng JW; Neild A; Ai Y Sci Adv; 2016 Jul; 2(7):e1600089. PubMed ID: 27453940 [TBL] [Abstract][Full Text] [Related]
19. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields. Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955 [TBL] [Abstract][Full Text] [Related]
20. Acoustofluidic relay: sequential trapping and transporting of microparticles via acoustically excited oscillating bubbles. Xie Y; Ahmed D; Lapsley MI; Lu M; Li S; Huang TJ J Lab Autom; 2014 Apr; 19(2):137-43. PubMed ID: 23592570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]