These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3219615)

  • 1. A microcomputer-based system for automated EEG collection and scoring of behavioral state in cats.
    Mamelak A; Quattrochi JJ; Hobson JA
    Brain Res Bull; 1988 Nov; 21(5):843-9. PubMed ID: 3219615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effects of noise on sleep. Part 1. Development of an automatic analysing system for all-night sleep polygraphy by microcomputer].
    Aoki S; Kawada T; Takeuchi K; Ogawa M; Suzuki S
    Nihon Eiseigaku Zasshi; 1989 Feb; 43(6):1092-101. PubMed ID: 2746977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated staging of sleep in cats using neural networks.
    Mamelak AN; Quattrochi JJ; Hobson JA
    Electroencephalogr Clin Neurophysiol; 1991 Jul; 79(1):52-61. PubMed ID: 1713552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microcomputer-based sleep stage analyzer.
    Goeller CJ; Sinton CM
    Comput Methods Programs Biomed; 1989 May; 29(1):31-6. PubMed ID: 2714077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic sleep-wake scoring in the rat on microcomputer APPLE II.
    Gandolfo G; Glin L; Lacoste G; Rodi M; Gottesmann G
    Int J Biomed Comput; 1988 Oct; 23(1-2):83-95. PubMed ID: 3220599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated EEG analysis with microcomputers.
    Smith JR
    Med Instrum; 1980; 14(6):319-21. PubMed ID: 7231229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An activity-based sleep monitor system for ambulatory use.
    Webster JB; Kripke DF; Messin S; Mullaney DJ; Wyborney G
    Sleep; 1982; 5(4):389-99. PubMed ID: 7163726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time spectral intensity analysis of the EEG on a common microcomputer.
    Williams CE; Gluckman PD
    J Neurosci Methods; 1990 Apr; 32(1):9-13. PubMed ID: 2335970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microcomputer-based sleep system: data acquisition and system calibration programs.
    Vivaldi EA; Pastel RH; Bakalian MJ; Fernstrom JD
    Brain Res Bull; 1988 Jan; 20(1):133-8. PubMed ID: 3342339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep scoring made easy-Semi-automated sleep analysis software and manual rescoring tools for basic sleep research in mice.
    Kreuzer M; Polta S; Gapp J; Schuler C; Kochs EF; Fenzl T
    MethodsX; 2015; 2():232-40. PubMed ID: 26150993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time automated sleep scoring: validation of a microcomputer-based system for mice.
    Van Gelder RN; Edgar DM; Dement WC
    Sleep; 1991 Feb; 14(1):48-55. PubMed ID: 1811319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automated sleep-state classification algorithm for quantifying sleep timing and sleep-dependent dynamics of electroencephalographic and cerebral metabolic parameters.
    Rempe MJ; Clegern WC; Wisor JP
    Nat Sci Sleep; 2015; 7():85-99. PubMed ID: 26366107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An EEG averaging technique for automated sleep-wake stage identification in the rat.
    van Luijtelaar EL; Coenen AM
    Physiol Behav; 1984 Nov; 33(5):837-41. PubMed ID: 6522504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Visual Scoring of Sleep in Infants 0 to 2 Months of Age.
    Grigg-Damberger MM
    J Clin Sleep Med; 2016 Mar; 12(3):429-45. PubMed ID: 26951412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time course of rat sleep variables assessed by a microcomputer-generated data base.
    Roncagliolo M; Vivaldi EA
    Brain Res Bull; 1991 Nov; 27(5):573-80. PubMed ID: 1756375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Automatic determination system of human sleep stages on an experimental basis].
    Matsuoka S; Ishikawak T; Inoue K; Hatashi A
    J UOEH; 1986 Mar; 8 Suppl():169-71. PubMed ID: 3726298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing high-speed digitization of single-unit neuronal activity on a microcomputer using a hybrid software-hardware technique.
    Aldridge JW; Walden JL; Gilman S
    J Neurosci Methods; 1989 Jun; 28(3):205-8. PubMed ID: 2502692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term sleep deprivation by hypothalamic stimulation in cats.
    Détári L; Kukorelli T; Hajnik T
    J Neurosci Methods; 1993 Sep; 49(3):225-30. PubMed ID: 8271841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reliability and functional validity of visual and semiautomatic sleep/wake scoring in the Møll-Wistar rat.
    Neckelmann D; Olsen OE; Fagerland S; Ursin R
    Sleep; 1994 Mar; 17(2):120-31. PubMed ID: 8036366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.