These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 32196482)

  • 1. Development of a biomimetic scallop robot capable of jet propulsion.
    Wang Y; Pang S; Jin H; Xu M; Sun S; Li W; Zhang S
    Bioinspir Biomim; 2020 Mar; 15(3):036008. PubMed ID: 32196482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal design and development of a fast steering robot inspired by scallops.
    Wang Y; Gao T; Pang S; Xu J; Tao X; Yang J; Sheng W
    Front Bioeng Biotechnol; 2023; 11():1297727. PubMed ID: 38260743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A resonant squid-inspired robot unlocks biological propulsive efficiency.
    Bujard T; Giorgio-Serchi F; Weymouth GD
    Sci Robot; 2021 Jan; 6(50):. PubMed ID: 34043579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators.
    Shintake J; Cacucciolo V; Shea H; Floreano D
    Soft Robot; 2018 Aug; 5(4):466-474. PubMed ID: 29957131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape memory alloy-driven undulatory locomotion of a soft biomimetic ray robot.
    Kim HS; Heo JK; Choi IG; Ahn SH; Chu WS
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34020436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, Modeling, and Control of an Aurelia-Inspired Robot Based on SMA Artificial Muscles.
    Yang Y; Chu C; Jin H; Hu Q; Xu M; Dong E
    Biomimetics (Basel); 2023 Jun; 8(2):. PubMed ID: 37366856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cephalopod-inspired robot capable of cyclic jet propulsion through shape change.
    Christianson CM; Cui Y; Ishida M; Bi X; Zhu Q; Pawlak G; Tolley MT
    Bioinspir Biomim; 2020 Sep; ():. PubMed ID: 32992299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and development of the efficient anguilliform swimming robot- MAR.
    Struebig K; Bayat B; Eckert P; Looijestijn A; Lueth TC; Ijspeert AJ
    Bioinspir Biomim; 2020 Mar; 15(3):035001. PubMed ID: 31940595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swimming Performance of the Frog-Inspired Soft Robot.
    Fan J; Wang S; Yu Q; Zhu Y
    Soft Robot; 2020 Oct; 7(5):615-626. PubMed ID: 32401696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Jet propulsion in the cold: Mechanics of swimming in the Antarctic scallop Adamussium colbecki.
    Denny M; Miller L
    J Exp Biol; 2006 Nov; 209(Pt 22):4503-14. PubMed ID: 17079720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications.
    Palagi S; Jager EW; Mazzolai B; Beccai L
    Bioinspir Biomim; 2013 Dec; 8(4):046004. PubMed ID: 24103844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of hair-like appendages and comparative analysis on their coordination toward steady and efficient swimming.
    Kwak B; Bae J
    Bioinspir Biomim; 2017 May; 12(3):036014. PubMed ID: 28397712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
    Jusufi A; Vogt DM; Wood RJ; Lauder GV
    Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid parameter identification of a multi-modal underwater soft robot.
    Giorgio-Serchi F; Arienti A; Corucci F; Giorelli M; Laschi C
    Bioinspir Biomim; 2017 Feb; 12(2):025007. PubMed ID: 28140363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Swimming by reciprocal motion at low Reynolds number.
    Qiu T; Lee TC; Mark AG; Morozov KI; Münster R; Mierka O; Turek S; Leshansky AM; Fischer P
    Nat Commun; 2014 Nov; 5():5119. PubMed ID: 25369018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.
    Kim SH; Shin K; Hashi S; Ishiyama K
    Bioinspir Biomim; 2012 Sep; 7(3):036007. PubMed ID: 22550128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fish-like three-dimensional swimming with an autonomous, multi-fin, and biomimetic robot.
    Berlinger F; Saadat M; Haj-Hariri H; Lauder GV; Nagpal R
    Bioinspir Biomim; 2021 Feb; 16(2):. PubMed ID: 33264757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Jellyfish-Inspired Soft Robot Driven by Fluid Electrode Dielectric Organic Robotic Actuators.
    Christianson C; Bayag C; Li G; Jadhav S; Giri A; Agba C; Li T; Tolley MT
    Front Robot AI; 2019; 6():126. PubMed ID: 33501141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism.
    Liao P; Zhang S; Sun D
    Bioinspir Biomim; 2018 Mar; 13(3):036007. PubMed ID: 29359705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunabot Flex: a tuna-inspired robot with body flexibility improves high-performance swimming.
    White CH; Lauder GV; Bart-Smith H
    Bioinspir Biomim; 2021 Mar; 16(2):. PubMed ID: 32927442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.