These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32196924)

  • 41. Improving mitochondrial function with SS-31 reverses age-related redox stress and improves exercise tolerance in aged mice.
    Campbell MD; Duan J; Samuelson AT; Gaffrey MJ; Merrihew GE; Egertson JD; Wang L; Bammler TK; Moore RJ; White CC; Kavanagh TJ; Voss JG; Szeto HH; Rabinovitch PS; MacCoss MJ; Qian WJ; Marcinek DJ
    Free Radic Biol Med; 2019 Apr; 134():268-281. PubMed ID: 30597195
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes.
    Monaco CMF; Hughes MC; Ramos SV; Varah NE; Lamberz C; Rahman FA; McGlory C; Tarnopolsky MA; Krause MP; Laham R; Hawke TJ; Perry CGR
    Diabetologia; 2018 Jun; 61(6):1411-1423. PubMed ID: 29666899
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective PPARdelta agonist treatment increases skeletal muscle lipid metabolism without altering mitochondrial energy coupling: an in vivo magnetic resonance spectroscopy study.
    Jucker BM; Yang D; Casey WM; Olzinski AR; Williams C; Lenhard SC; Legos JJ; Hawk CT; Sarkar SK; Newsholme SJ
    Am J Physiol Endocrinol Metab; 2007 Nov; 293(5):E1256-64. PubMed ID: 17726146
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Normal in vivo skeletal muscle oxidative metabolism in sporadic inclusion body myositis assessed by 31P-magnetic resonance spectroscopy.
    Lodi R; Taylor DJ; Tabrizi SJ; Hilton-Jones D; Squier MV; Seller A; Styles P; Schapira AH
    Brain; 1998 Nov; 121 ( Pt 11)():2119-26. PubMed ID: 9827771
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exercise intolerance and rapid skeletal muscle energetic decline in human age-associated frailty.
    Lewsey SC; Weiss K; Schär M; Zhang Y; Bottomley PA; Samuel TJ; Xue QL; Steinberg A; Walston JD; Gerstenblith G; Weiss RG
    JCI Insight; 2020 Oct; 5(20):. PubMed ID: 32941181
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men.
    Gram M; Vigelsø A; Yokota T; Hansen CN; Helge JW; Hey-Mogensen M; Dela F
    Exp Gerontol; 2014 Oct; 58():269-78. PubMed ID: 25193555
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults.
    Distefano G; Standley RA; Zhang X; Carnero EA; Yi F; Cornnell HH; Coen PM
    J Cachexia Sarcopenia Muscle; 2018 Apr; 9(2):279-294. PubMed ID: 29368427
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Age-related changes in oxidative capacity differ between locomotory muscles and are associated with physical activity behavior.
    Larsen RG; Callahan DM; Foulis SA; Kent-Braun JA
    Appl Physiol Nutr Metab; 2012 Feb; 37(1):88-99. PubMed ID: 22236246
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity.
    Rasmussen UF; Krustrup P; Kjaer M; Rasmussen HN
    Pflugers Arch; 2003 May; 446(2):270-8. PubMed ID: 12739165
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Diabetic foot syndrome: importance of calf muscles MR spectroscopy in the assessment of limb ischemia and effect of revascularization].
    Němcová A; Dubský M; Jirkovská A; Šedivý P; Drobný M; Hájek M; Dezortová M; Bém R; Fejfarová V; Pyšná A
    Vnitr Lek; 2017; 63(4):236-241. PubMed ID: 28520446
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics.
    Chicco AJ; Le CH; Gnaiger E; Dreyer HC; Muyskens JB; D'Alessandro A; Nemkov T; Hocker AD; Prenni JE; Wolfe LM; Sindt NM; Lovering AT; Subudhi AW; Roach RC
    J Biol Chem; 2018 May; 293(18):6659-6671. PubMed ID: 29540485
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Burn injury causes mitochondrial dysfunction in skeletal muscle.
    Padfield KE; Astrakas LG; Zhang Q; Gopalan S; Dai G; Mindrinos MN; Tompkins RG; Rahme LG; Tzika AA
    Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5368-73. PubMed ID: 15809440
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Early or advanced stage type 2 diabetes is not accompanied by in vivo skeletal muscle mitochondrial dysfunction.
    De Feyter HM; van den Broek NM; Praet SF; Nicolay K; van Loon LJ; Prompers JJ
    Eur J Endocrinol; 2008 May; 158(5):643-53. PubMed ID: 18426822
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Signatures of cysteine oxidation on muscle structural and contractile proteins are associated with physical performance and muscle function in older adults: Study of Muscle, Mobility and Aging (SOMMA).
    Day NJ; Kelly SS; Lui LY; Mansfield TA; Gaffrey MJ; Trejo JB; Sagendorf TJ; Attah IK; Moore RJ; Douglas CM; Newman AB; Kritchevsky SB; Kramer PA; Marcinek DJ; Coen PM; Goodpaster BH; Hepple RT; Cawthon PM; Petyuk VA; Esser KA; Qian WJ; Cummings SR
    Aging Cell; 2024 Jun; 23(6):e14094. PubMed ID: 38332629
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Failed upregulation of TFAM protein and mitochondrial DNA in oxidatively deficient fibers of chronic obstructive pulmonary disease locomotor muscle.
    Konokhova Y; Spendiff S; Jagoe RT; Aare S; Kapchinsky S; MacMillan NJ; Rozakis P; Picard M; Aubertin-Leheudre M; Pion CH; Bourbeau J; Hepple RT; Taivassalo T
    Skelet Muscle; 2016; 6():10. PubMed ID: 26893822
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Resistance exercise training and in vitro skeletal muscle oxidative capacity in older adults.
    Flack KD; Davy BM; DeBerardinis M; Boutagy NE; McMillan RP; Hulver MW; Frisard MI; Anderson AS; Savla J; Davy KP
    Physiol Rep; 2016 Jul; 4(13):. PubMed ID: 27405968
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Searching for a mitochondrial root to the decline in muscle function with ageing.
    Gonzalez-Freire M; Adelnia F; Moaddel R; Ferrucci L
    J Cachexia Sarcopenia Muscle; 2018 Jun; 9(3):435-440. PubMed ID: 29774990
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Due to reverse electron transfer, mitochondrial H2O2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved.
    Capel F; Rimbert V; Lioger D; Diot A; Rousset P; Mirand PP; Boirie Y; Morio B; Mosoni L
    Mech Ageing Dev; 2005 Apr; 126(4):505-11. PubMed ID: 15722109
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proteomic DIGE analysis of the mitochondria-enriched fraction from aged rat skeletal muscle.
    O'Connell K; Ohlendieck K
    Proteomics; 2009 Dec; 9(24):5509-24. PubMed ID: 19834913
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans.
    Gouspillou G; Sgarioto N; Kapchinsky S; Purves-Smith F; Norris B; Pion CH; Barbat-Artigas S; Lemieux F; Taivassalo T; Morais JA; Aubertin-Leheudre M; Hepple RT
    FASEB J; 2014 Apr; 28(4):1621-33. PubMed ID: 24371120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.