These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32196924)

  • 61. A novel deep proteomic approach in human skeletal muscle unveils distinct molecular signatures affected by aging and resistance training.
    Roberts MD; Ruple BA; Godwin JS; McIntosh MC; Chen SY; Kontos NJ; Agyin-Birikorang A; Michel M; Plotkin DL; Mattingly ML; Mobley B; Ziegenfuss TN; Fruge AD; Kavazis AN
    Aging (Albany NY); 2024 Apr; 16(8):6631-6651. PubMed ID: 38643460
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Declined expressions of vast mitochondria-related genes represented by CYCS and transcription factor ESRRA in skeletal muscle aging.
    Kan J; Hu Y; Ge Y; Zhang W; Lu S; Zhao C; Zhang R; Liu Y
    Bioengineered; 2021 Dec; 12(1):3485-3502. PubMed ID: 34229541
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Relation between in vivo and in vitro measurements of skeletal muscle oxidative metabolism.
    Larson-Meyer DE; Newcomer BR; Hunter GR; Joanisse DR; Weinsier RL; Bamman MM
    Muscle Nerve; 2001 Dec; 24(12):1665-76. PubMed ID: 11745976
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Experimental evidence against the mitochondrial theory of aging. A study of isolated human skeletal muscle mitochondria.
    Rasmussen UF; Krustrup P; Kjaer M; Rasmussen HN
    Exp Gerontol; 2003 Aug; 38(8):877-86. PubMed ID: 12915209
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The Mitochondrial Proteomic Signatures of Human Skeletal Muscle Linked to Insulin Resistance.
    Kruse R; Sahebekhtiari N; Højlund K
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32731645
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans.
    Layec G; Malucelli E; Le Fur Y; Manners D; Yashiro K; Testa C; Cozzone PJ; Iotti S; Bendahan D
    NMR Biomed; 2013 Nov; 26(11):1403-11. PubMed ID: 23703831
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress.
    Davuluri G; Allawy A; Thapaliya S; Rennison JH; Singh D; Kumar A; Sandlers Y; Van Wagoner DR; Flask CA; Hoppel C; Kasumov T; Dasarathy S
    J Physiol; 2016 Dec; 594(24):7341-7360. PubMed ID: 27558544
    [TBL] [Abstract][Full Text] [Related]  

  • 68. 31P Magnetic Resonance Spectroscopy Assessment of Muscle Bioenergetics as a Predictor of Gait Speed in the Baltimore Longitudinal Study of Aging.
    Choi S; Reiter DA; Shardell M; Simonsick EM; Studenski S; Spencer RG; Fishbein KW; Ferrucci L
    J Gerontol A Biol Sci Med Sci; 2016 Dec; 71(12):1638-1645. PubMed ID: 27075894
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Increased intramyocellular lipids but unaltered in vivo mitochondrial oxidative phosphorylation in skeletal muscle of adipose triglyceride lipase-deficient mice.
    Nunes PM; van de Weijer T; Veltien A; Arnts H; Hesselink MK; Glatz JF; Schrauwen P; Tack CJ; Heerschap A
    Am J Physiol Endocrinol Metab; 2012 Jul; 303(1):E71-81. PubMed ID: 22496349
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Linking bioenergetic function of mitochondria to tissue-specific molecular fingerprints.
    Kappler L; Hoene M; Hu C; von Toerne C; Li J; Bleher D; Hoffmann C; Böhm A; Kollipara L; Zischka H; Königsrainer A; Häring HU; Peter A; Xu G; Sickmann A; Hauck SM; Weigert C; Lehmann R
    Am J Physiol Endocrinol Metab; 2019 Aug; 317(2):E374-E387. PubMed ID: 31211616
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Bioenergetic basis for the increased fatigability with ageing.
    Sundberg CW; Prost RW; Fitts RH; Hunter SK
    J Physiol; 2019 Oct; 597(19):4943-4957. PubMed ID: 31018011
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Impact of prolonged overfeeding on skeletal muscle mitochondria in healthy individuals.
    Toledo FGS; Johannsen DL; Covington JD; Bajpeyi S; Goodpaster B; Conley KE; Ravussin E
    Diabetologia; 2018 Feb; 61(2):466-475. PubMed ID: 29150696
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Matrisome, innervation and oxidative metabolism affected in older compared with younger males with similar physical activity.
    Lagerwaard B; Nieuwenhuizen AG; Bunschoten A; de Boer VCJ; Keijer J
    J Cachexia Sarcopenia Muscle; 2021 Oct; 12(5):1214-1231. PubMed ID: 34219410
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Increased skeletal muscle mitochondrial free radical production in peripheral arterial disease despite preserved mitochondrial respiratory capacity.
    Hart CR; Layec G; Trinity JD; Kwon OS; Zhao J; Reese VR; Gifford JR; Richardson RS
    Exp Physiol; 2018 Jun; 103(6):838-850. PubMed ID: 29604234
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Muscle phosphorus magnetic resonance spectroscopy oxidative indices correlate with physical activity.
    Tartaglia MC; Chen JT; Caramanos Z; Taivassalo T; Arnold DL; Argov Z
    Muscle Nerve; 2000 Feb; 23(2):175-81. PubMed ID: 10639607
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Skeletal muscle oxidative capacity in amyotrophic lateral sclerosis.
    Ryan TE; Erickson ML; Verma A; Chavez J; Rivner MH; Mccully KK
    Muscle Nerve; 2014 Nov; 50(5):767-74. PubMed ID: 24616062
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Value of dynamic ³¹P magnetic resonance spectroscopy technique in in vivo assessment of the skeletal muscle mitochondrial function in type 2 diabetes.
    Wu FY; Tu HJ; Qin B; Chen T; Xu HF; Qi J; Wang DH
    Chin Med J (Engl); 2012 Jan; 125(2):281-6. PubMed ID: 22340560
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Uraemic muscle metabolism at rest and during exercise.
    Thompson CH; Kemp GJ; Barnes PR; Rajagopalan B; Styles P; Taylor DJ; Radda GK
    Nephrol Dial Transplant; 1994; 9(11):1600-5. PubMed ID: 7870350
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Comparative analysis of skeletal muscle oxidative capacity in children and adults: a 31P-MRS study.
    Ratel S; Tonson A; Le Fur Y; Cozzone P; Bendahan D
    Appl Physiol Nutr Metab; 2008 Aug; 33(4):720-7. PubMed ID: 18641715
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Accuracy and precision of quantitative 31P-MRS measurements of human skeletal muscle mitochondrial function.
    Layec G; Gifford JR; Trinity JD; Hart CR; Garten RS; Park SY; Le Fur Y; Jeong EK; Richardson RS
    Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E358-66. PubMed ID: 27302751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.