BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 32196937)

  • 1. Overexpression of Transcription Factor ZNF1 of Glycolysis Improves Bioethanol Productivity under High Glucose Concentration and Enhances Acetic Acid Tolerance of Saccharomyces cerevisiae.
    Songdech P; Ruchala J; Semkiv MV; Jensen LT; Sibirny A; Ratanakhanokchai K; Soontorngun N
    Biotechnol J; 2020 Jul; 15(7):e1900492. PubMed ID: 32196937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol.
    Samakkarn W; Ratanakhanokchai K; Soontorngun N
    Appl Environ Microbiol; 2021 Jul; 87(16):e0058821. PubMed ID: 34105981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New regulatory role of Znf1 in transcriptional control of pentose phosphate pathway and ATP synthesis for enhanced isobutanol and acid tolerance.
    Ali SA; Songdech P; Samakkarn W; Duangphakdee O; Soontorngun N
    Yeast; 2024 Jun; 41(6):401-417. PubMed ID: 38708451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of transcription factors Znf1, Sip4, Adr1, Tup1, and Hap4 on xylose alcoholic fermentation in the engineered yeast Saccharomyces cerevisiae.
    Dzanaeva L; Kruk B; Ruchala J; Sibirny A; Dmytruk K
    Antonie Van Leeuwenhoek; 2021 Sep; 114(9):1373-1385. PubMed ID: 34170419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased production of isobutanol from xylose through metabolic engineering of Saccharomyces cerevisiae overexpressing transcription factor Znf1 and exogenous genes.
    Songdech P; Butkinaree C; Yingchutrakul Y; Promdonkoy P; Runguphan W; Soontorngun N
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38331422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc cluster protein Znf1, a novel transcription factor of non-fermentative metabolism in Saccharomyces cerevisiae.
    Tangsombatvichit P; Semkiv MV; Sibirny AA; Jensen LT; Ratanakhanokchai K; Soontorngun N
    FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25673751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of cryptic xylose metabolism by a transcriptional activator Znf1 boosts up xylitol production in the engineered Saccharomyces cerevisiae lacking xylose suppressor BUD21 gene.
    Songdech P; Intasit R; Yingchutrakul Y; Butkinaree C; Ratanakhanokchai K; Soontorngun N
    Microb Cell Fact; 2022 Mar; 21(1):32. PubMed ID: 35248023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.
    Chen Y; Stabryla L; Wei N
    Appl Environ Microbiol; 2016 Jan; 82(7):2156-2166. PubMed ID: 26826231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains.
    Wu X; Zhang L; Jin X; Fang Y; Zhang K; Qi L; Zheng D
    Biotechnol Lett; 2016 Jul; 38(7):1097-106. PubMed ID: 27067354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1.
    Zhang MM; Zhao XQ; Cheng C; Bai FW
    Biotechnol J; 2015 Dec; 10(12):1903-11. PubMed ID: 26479519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.
    Sasano Y; Watanabe D; Ukibe K; Inai T; Ohtsu I; Shimoi H; Takagi H
    J Biosci Bioeng; 2012 Apr; 113(4):451-5. PubMed ID: 22178024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.
    Mira NP; Palma M; Guerreiro JF; Sá-Correia I
    Microb Cell Fact; 2010 Oct; 9():79. PubMed ID: 20973990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation.
    Cheng C; Zhang M; Xue C; Bai F; Zhao X
    J Biosci Bioeng; 2017 Feb; 123(2):141-146. PubMed ID: 27576171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae.
    Oh EJ; Wei N; Kwak S; Kim H; Jin YS
    J Biotechnol; 2019 Feb; 292():1-4. PubMed ID: 30615911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of the truncated version of ILV2 enhances glycerol production in Saccharomyces cerevisiae.
    Murashchenko L; Abbas C; Dmytruk K; Sibirny A
    Yeast; 2016 Aug; 33(8):463-9. PubMed ID: 26990811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.
    Ma C; Wei X; Sun C; Zhang F; Xu J; Zhao X; Bai F
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2441-9. PubMed ID: 25698512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae.
    van Maris AJ; Bakker BM; Brandt M; Boorsma A; Teixeira de Mattos MJ; Grivell LA; Pronk JT; Blom J
    FEMS Yeast Res; 2001 Jul; 1(2):139-49. PubMed ID: 12702359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improve carbon metabolic flux in Saccharomyces cerevisiae at high temperature by overexpressed TSL1 gene.
    Ge XY; Xu Y; Chen X
    J Ind Microbiol Biotechnol; 2013 Apr; 40(3-4):345-52. PubMed ID: 23377879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents.
    Kim SK; Jo JH; Jin YS; Seo JH
    Bioprocess Biosyst Eng; 2017 May; 40(5):683-691. PubMed ID: 28120125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.