These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 32196958)

  • 21. Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives.
    Lakhan MN; Hanan A; Hussain A; Ali Soomro I; Wang Y; Ahmed M; Aftab U; Sun H; Arandiyan H
    Chem Commun (Camb); 2024 May; 60(39):5104-5135. PubMed ID: 38625567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Universal Strategy for Carbon-Supported Transition Metal Phosphides as High-Performance Bifunctional Electrocatalysts towards Efficient Overall Water Splitting.
    Kang Q; Li M; Shi J; Lu Q; Gao F
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19447-19456. PubMed ID: 32242652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review.
    Li D; Shi J; Li C
    Small; 2018 Jun; 14(23):e1704179. PubMed ID: 29575653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noble metal-free hydrogen evolution catalysts for water splitting.
    Zou X; Zhang Y
    Chem Soc Rev; 2015 Aug; 44(15):5148-80. PubMed ID: 25886650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multimetallic transition metal phosphide nanostructures for supercapacitors and electrochemical water splitting.
    Zhang N; Amorim I; Liu L
    Nanotechnology; 2022 Aug; 33(43):. PubMed ID: 35820404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogen production from water electrolysis: role of catalysts.
    Wang S; Lu A; Zhong CJ
    Nano Converg; 2021 Feb; 8(1):4. PubMed ID: 33575919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Earth-Abundant Transition-Metal-Based Bifunctional Electrocatalysts for Overall Water Splitting in Alkaline Media.
    Yu J; Le TA; Tran NQ; Lee H
    Chemistry; 2020 May; 26(29):6423-6436. PubMed ID: 32103541
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphide-Based Electrocatalysts for Urea Electrolysis: Recent Trends and Progress.
    Kumar S; Bhanuse GB; Fu YP
    Chemphyschem; 2024 Apr; 25(8):e202300924. PubMed ID: 38366133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanostructured Metal Phosphide Based Catalysts for Electrochemical Water Splitting: A Review.
    Bodhankar PM; Sarawade PB; Kumar P; Vinu A; Kulkarni AP; Lokhande CD; Dhawale DS
    Small; 2022 May; 18(21):e2107572. PubMed ID: 35285140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of Nickel Phosphide Electrocatalysts from Hybrid Metal Phosphonates.
    Zhang R; Russo PA; Feist M; Amsalem P; Koch N; Pinna N
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14013-14022. PubMed ID: 28357856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From Atomic-Level Synthesis to Device-Scale Reactors: A Multiscale Approach to Water Electrolysis.
    Du X; Qi M; Wang Y
    Acc Chem Res; 2024 May; 57(9):1298-1309. PubMed ID: 38597422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of single crystalline two-dimensional transition-metal phosphides via a salt-templating method.
    Li T; Jin H; Liang Z; Huang L; Lu Y; Yu H; Hu Z; Wu J; Xia BY; Feng G; Zhou J
    Nanoscale; 2018 Apr; 10(15):6844-6849. PubMed ID: 29616268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of Metal Phosphide Nanoparticles Supported on Porous N-Doped Carbon Derived from Spirulina for Universal-pH Hydrogen Evolution.
    Yang M; Feng F; Wang K; Li S; Huang X; Gong L; Ma L; Li R
    ChemSusChem; 2020 Jan; 13(2):351-359. PubMed ID: 31721453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytic acid-derivative transition metal phosphides encapsulated in N,P-codoped carbon: an efficient and durable hydrogen evolution electrocatalyst in a wide pH range.
    Pu Z; Amiinu IS; Zhang C; Wang M; Kou Z; Mu S
    Nanoscale; 2017 Mar; 9(10):3555-3560. PubMed ID: 28244521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal Electrocatalysts for Hydrogen Production in Water Splitting.
    Kazemi A; Manteghi F; Tehrani Z
    ACS Omega; 2024 Feb; 9(7):7310-7335. PubMed ID: 38405471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. M
    Zhao W; Lu X; Selvaraj M; Wei W; Jiang Z; Ullah N; Liu J; Xie J
    Nanoscale; 2018 May; 10(20):9698-9706. PubMed ID: 29762620
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanobundles of Iron Phosphide Fabricated by Direct Phosphorization of Metal-Organic Frameworks as an Efficient Hydrogen-Evolving Electrocatalyst.
    Zhao R; Gao S; Wu Y; Liang Z; Zhang H; Xia W; Li S; Zhao Y; Zou R
    Chemistry; 2020 Mar; 26(18):4001-4006. PubMed ID: 31647595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimized Transition Metal Phosphides for Direct Seawater Electrolysis: Current Trends.
    Li Y; Xin T; Cao Z; Zheng W; He P; Yoon Suk Lee L
    ChemSusChem; 2024 Aug; 17(15):e202301926. PubMed ID: 38477449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting.
    Zhang G; Wang G; Liu Y; Liu H; Qu J; Li J
    J Am Chem Soc; 2016 Nov; 138(44):14686-14693. PubMed ID: 27797511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.