These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
417 related articles for article (PubMed ID: 32196958)
41. CoP Nanoparticles in Situ Grown in Three-Dimensional Hierarchical Nanoporous Carbons as Superior Electrocatalysts for Hydrogen Evolution. Yuan W; Wang X; Zhong X; Li CM ACS Appl Mater Interfaces; 2016 Aug; 8(32):20720-9. PubMed ID: 27467887 [TBL] [Abstract][Full Text] [Related]
42. Noble-Metal-Free Electrocatalysts for Oxygen Evolution. Lyu F; Wang Q; Choi SM; Yin Y Small; 2019 Jan; 15(1):e1804201. PubMed ID: 30456922 [TBL] [Abstract][Full Text] [Related]
43. Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting. Wang J; Cui W; Liu Q; Xing Z; Asiri AM; Sun X Adv Mater; 2016 Jan; 28(2):215-30. PubMed ID: 26551487 [TBL] [Abstract][Full Text] [Related]
44. Earth-Abundant Transition-Metal-Based Electrocatalysts for Water Electrolysis to Produce Renewable Hydrogen. Li A; Sun Y; Yao T; Han H Chemistry; 2018 Dec; 24(69):18334-18355. PubMed ID: 30198114 [TBL] [Abstract][Full Text] [Related]
45. Construction of urchin-like bimetallic phosphides induced by carbon dots for efficient wide pH hydrogen production. Zhao H; Jiang X; Jin M; Song J; Li M; Zhou J; Pan X J Colloid Interface Sci; 2023 Dec; 652(Pt B):1208-1216. PubMed ID: 37657220 [TBL] [Abstract][Full Text] [Related]
46. Chalcogenide and Phosphide Solid-State Electrocatalysts for Hydrogen Generation. You B; Sun Y Chempluschem; 2016 Oct; 81(10):1045-1055. PubMed ID: 31964090 [TBL] [Abstract][Full Text] [Related]
47. Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting. Jiang Y; Lu Y Nanoscale; 2020 May; 12(17):9327-9351. PubMed ID: 32315016 [TBL] [Abstract][Full Text] [Related]
48. Critical Review, Recent Updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its Derivatives for Electrochemical Water Splitting. Jadhav HS; Bandal HA; Ramakrishna S; Kim H Adv Mater; 2022 Mar; 34(11):e2107072. PubMed ID: 34846082 [TBL] [Abstract][Full Text] [Related]
49. General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution. Read CG; Callejas JF; Holder CF; Schaak RE ACS Appl Mater Interfaces; 2016 May; 8(20):12798-803. PubMed ID: 27156388 [TBL] [Abstract][Full Text] [Related]
50. Research Progress of Oxygen Evolution Reaction Catalysts for Electrochemical Water Splitting. Liu Y; Zhou D; Deng T; He G; Chen A; Sun X; Yang Y; Miao P ChemSusChem; 2021 Dec; 14(24):5359-5383. PubMed ID: 34704377 [TBL] [Abstract][Full Text] [Related]
51. Boosting Electrochemical Hydrogen Evolution of Porous Metal Phosphides Nanosheets by Coating Defective TiO Liu X; Hu Q; Zhu B; Li G; Fan L; Chai X; Zhang Q; Liu J; He C Small; 2018 Oct; 14(42):e1802755. PubMed ID: 30260576 [TBL] [Abstract][Full Text] [Related]
52. Structure-Activity Relationships for Pt-Free Metal Phosphide Hydrogen Evolution Electrocatalysts. Owens-Baird B; Kolen'ko YV; Kovnir K Chemistry; 2018 May; 24(29):7298-7311. PubMed ID: 29172022 [TBL] [Abstract][Full Text] [Related]
53. Electrochemical preparation of nano/micron structure transition metal-based catalysts for the oxygen evolution reaction. Li H; Han X; Zhao W; Azhar A; Jeong S; Jeong D; Na J; Wang S; Yu J; Yamauchi Y Mater Horiz; 2022 Jul; 9(7):1788-1824. PubMed ID: 35485940 [TBL] [Abstract][Full Text] [Related]
54. One-Step Facile Synthesis of Cobalt Phosphides for Hydrogen Evolution Reaction Catalysts in Acidic and Alkaline Medium. Sumboja A; An T; Goh HY; Lübke M; Howard DP; Xu Y; Handoko AD; Zong Y; Liu Z ACS Appl Mater Interfaces; 2018 May; 10(18):15673-15680. PubMed ID: 29671569 [TBL] [Abstract][Full Text] [Related]
55. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Zhu J; Hu L; Zhao P; Lee LYS; Wong KY Chem Rev; 2020 Jan; 120(2):851-918. PubMed ID: 31657904 [TBL] [Abstract][Full Text] [Related]
56. Progress in the development of heteroatom-doped nickel phosphates for electrocatalytic water splitting. Yu Y; Chen Q; Li J; Rao P; Li R; Du Y; Jia C; Huang W; Luo J; Deng P; Shen Y; Tian X J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1091-1102. PubMed ID: 34571296 [TBL] [Abstract][Full Text] [Related]
57. Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony. Anantharaj S; Noda S Small; 2020 Jan; 16(2):e1905779. PubMed ID: 31823508 [TBL] [Abstract][Full Text] [Related]
58. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Yu ZY; Duan Y; Feng XY; Yu X; Gao MR; Yu SH Adv Mater; 2021 Aug; 33(31):e2007100. PubMed ID: 34117808 [TBL] [Abstract][Full Text] [Related]
59. A Green Synthesis Strategy for Cobalt Phosphide Deposited on N, P Co-Doped Graphene for Efficient Hydrogen Evolution. Ma J; Wang J; Li J; Tian Y; Zhang T Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763395 [TBL] [Abstract][Full Text] [Related]
60. Integrating Covalent Organic Framework with Transition Metal Phosphide for Noble-Metal-Free Visible-Light-Driven Photocatalytic H Yan G; Sun X; Zhang K; Zhang Y; Li H; Dou Y; Yuan D; Huang H; Jia B; Li H; Ma T Small; 2022 Jun; 18(25):e2201340. PubMed ID: 35612000 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]