These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32196971)

  • 1. Limbostomy: Longitudinal Intravital Microendoscopy in Murine Osteotomies.
    Stefanowski J; Fiedler AF; Köhler M; Günther R; Liublin W; Tschaikner M; Rauch A; Reismann D; Matthys R; Nützi R; Bixel MG; Adams RH; Niesner RA; Duda GN; Hauser AE
    Cytometry A; 2020 May; 97(5):483-495. PubMed ID: 32196971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Longitudinal intravital imaging of the femoral bone marrow reveals plasticity within marrow vasculature.
    Reismann D; Stefanowski J; Günther R; Rakhymzhan A; Matthys R; Nützi R; Zehentmeier S; Schmidt-Bleek K; Petkau G; Chang HD; Naundorf S; Winter Y; Melchers F; Duda G; Hauser AE; Niesner RA
    Nat Commun; 2017 Dec; 8(1):2153. PubMed ID: 29255233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intravital Multiphoton Imaging of the Bone and Bone Marrow Environment.
    Kim J; Bixel MG
    Cytometry A; 2020 May; 97(5):496-503. PubMed ID: 31758756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Singlet gradient index lens for deep in vivo multiphoton microscopy.
    Murray TA; Levene MJ
    J Biomed Opt; 2012 Feb; 17(2):021106. PubMed ID: 22463024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An aspherical microlens assembly for deep brain fluorescence microendoscopy.
    Sato M; Sano S; Watanabe H; Kudo Y; Nakai J
    Biochem Biophys Res Commun; 2020 Jun; 527(2):447-452. PubMed ID: 32336546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial Distribution of Macrophages During Callus Formation and Maturation Reveals Close Crosstalk Between Macrophages and Newly Forming Vessels.
    Stefanowski J; Lang A; Rauch A; Aulich L; Köhler M; Fiedler AF; Buttgereit F; Schmidt-Bleek K; Duda GN; Gaber T; Niesner RA; Hauser AE
    Front Immunol; 2019; 10():2588. PubMed ID: 31956322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystalline lens gradient refractive index distribution in the guinea pig.
    de Castro A; Martinez-Enriquez E; Perez-Merino P; Velasco-Ocaña M; Revuelta L; McFadden S; Marcos S
    Ophthalmic Physiol Opt; 2020 May; 40(3):308-315. PubMed ID: 32338776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bendable long graded index lens microendoscopy.
    Liu G; Kang JW; Bhagavatula S; Ahn SW; So PTC; Tearney GJ; Jonas O
    Opt Express; 2022 Sep; 30(20):36651-36664. PubMed ID: 36258589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel model for ectopic, chronic, intravital multiphoton imaging of bone marrow vasculature and architecture in split femurs.
    Bălan M; Kiefer F
    Intravital; 2015; 4(2):e1066949. PubMed ID: 28243515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy.
    Wang C; Ji N
    Opt Lett; 2012 Jun; 37(11):2001-3. PubMed ID: 22660101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution intravital imaging of the murine hypothalamus using GRIN lenses and confocal microscopy.
    Butiaeva LI; Kokoeva MV
    STAR Protoc; 2022 Mar; 3(1):101193. PubMed ID: 35243378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals.
    Kim JK; Lee WM; Kim P; Choi M; Jung K; Kim S; Yun SH
    Nat Protoc; 2012 Jul; 7(8):1456-69. PubMed ID: 22767088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intravital Imaging of Bone Marrow Microenvironment in the Mouse Calvaria and Tibia.
    Shih C; Tan L; Li JLY; Tan Y; Cheng H; Ng LG
    Methods Mol Biol; 2021; 2308():177-202. PubMed ID: 34057724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometry-invariant gradient refractive index lens: analytical ray tracing.
    Bahrami M; Goncharov AV
    J Biomed Opt; 2012 May; 17(5):055001. PubMed ID: 22612122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wave-front aberration measurements on GRIN-rod lenses.
    Cline TW; Jander RB
    Appl Opt; 1982 Mar; 21(6):1035-41. PubMed ID: 20389800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Two-Step GRIN Lens Coating for In Vivo Brain Imaging.
    Yang Y; Zhang L; Wang Z; Liang B; Barbera G; Moffitt C; Li Y; Lin DT
    Neurosci Bull; 2019 Jun; 35(3):419-424. PubMed ID: 30852804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in spherical aberration after lens refilling with a silicone oil.
    Wong KH; Koopmans SA; Terwee T; Kooijman AC
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1261-7. PubMed ID: 17325171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Medial closed wedge osteotomy of the distal femur in biplanar technique and a specific plate fixator].
    Lobenhoffer P; Kley K; Freiling D; van Heerwaarden R
    Oper Orthop Traumatol; 2017 Aug; 29(4):306-319. PubMed ID: 28497247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metaoptics for aberration correction in microendoscopy.
    Thomas S; George JG; Ferranti F; Bhattacharya S
    Opt Express; 2024 Mar; 32(6):9686-9698. PubMed ID: 38571197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking Strain-Specific Morphogenesis and Angiogenesis of Murine Calvaria with Large-Scale Optoacoustic and Ultrasound Microscopy.
    Li W; Liu YH; Estrada H; Rebling J; Reiss M; Galli S; Nombela-Arrieta C; Razansky D
    J Bone Miner Res; 2022 May; 37(5):1032-1043. PubMed ID: 35220594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.