These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32197176)

  • 1. Enhanced anodic oxidation and energy saving for dye removal by integrating O
    Mo Y; Du M; Yuan T; Liu M; Wang H; He B; Li J; Zhao X
    Chemosphere; 2020 Aug; 252():126460. PubMed ID: 32197176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneously enhancing degradation of refractory organics and achieving nitrogen removal by coupling denitrifying biocathode with MnO
    Mo Y; Du M; Cui S; Wang H; Zhao X; Zhang M; Li J
    J Hazard Mater; 2021 Jan; 402():123467. PubMed ID: 32712363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paired removal of color and COD from textile dyeing wastewater by simultaneous anodic and indirect cathodic oxidation.
    Wang CT; Chou WL; Kuo YM; Chang FL
    J Hazard Mater; 2009 Sep; 169(1-3):16-22. PubMed ID: 19362772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual electrodes oxidation of dye wastewater with gas diffusion cathode.
    Shen Z; Yang J; Hu X; Lei Y; Ji X; Jia J; Wang W
    Environ Sci Technol; 2005 Mar; 39(6):1819-26. PubMed ID: 15819242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential reduction/oxidation of azo dyes in a three-dimensional biofilm electrode reactor.
    Liu S; Feng X; Gu F; Li X; Wang Y
    Chemosphere; 2017 Nov; 186():287-294. PubMed ID: 28787684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual electrodes degradation of Amaranth using a thin-film photocatalytic reactor with dual slant-placed electrodes.
    Xu YL; Li JX; Zhong DJ; Jia JP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(13):1700-6. PubMed ID: 23947709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of electrochemical oxidation techniques for degradation of dye effluents--a comparative approach.
    Raghu S; Lee CW; Chellammal S; Palanichamy S; Basha CA
    J Hazard Mater; 2009 Nov; 171(1-3):748-54. PubMed ID: 19592159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal decomposition based fabrication of dimensionally stable Ti/SnO
    Chen S; Zhou L; Yang T; He Q; Zhou P; He P; Dong F; Zhang H; Jia B
    Chemosphere; 2020 Dec; 261():128201. PubMed ID: 33113663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constant current-exponential attenuation mode: A non-traditional power supply mode for electrocatalytic oxidation.
    Zhang Z; Qiao D; Li X; Jing X; Xu H; Yan W
    Chemosphere; 2023 Apr; 319():137961. PubMed ID: 36738940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Advanced treatment of coking wastewater with a novel heterogeneous electro-Fenton technology].
    Li HT; Li YP; Zhang AY; Cao HB; Li XG; Zhang Y
    Huan Jing Ke Xue; 2011 Jan; 32(1):171-8. PubMed ID: 21404683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode.
    Vlyssides AG; Loizidou M; Karlis PK; Zorpas AA; Papaioannou D
    J Hazard Mater; 1999 Dec; 70(1-2):41-52. PubMed ID: 10611427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of methyl orange dye wastewater by cooperative electrochemical oxidation in anodic-cathodic compartment.
    Pang L; Wang H; Bian ZY
    Water Sci Technol; 2013; 67(3):521-6. PubMed ID: 23202555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A promising electrode material modified by Nb-doped TiO
    Xu L; Liang G; Yin M
    Chemosphere; 2017 Apr; 173():425-434. PubMed ID: 28129621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ electro-generated Ni(OH)
    Xue Y; Wang X; Liu Q; Feng M; Ding Z; Chu J; Zhu W; Liu N; Li Z
    Water Sci Technol; 2024 Jul; 90(1):225-237. PubMed ID: 39007316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical removal of synthetic methyl orange dyeing wastewater by reverse electrodialysis reactor: Experiment and mineralizing model.
    Leng Q; Xu S; Wu X; Wang S; Jin D; Wang P; Wu D; Dong F
    Environ Res; 2022 Nov; 214(Pt 4):114064. PubMed ID: 35977587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical decolorization of dye wastewater by surface-activated boron-doped nanocrystalline diamond electrode.
    Chen C; Nurhayati E; Juang Y; Huang C
    J Environ Sci (China); 2016 Jul; 45():100-7. PubMed ID: 27372123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of chloride on the one step electrochemical treatment of an industrial textile wastewater with tin dioxide anodes. The case of trichromy procion HEXL.
    Orts F; Bonastre J; Fernández J; Cases F
    Chemosphere; 2020 Apr; 245():125396. PubMed ID: 31784183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment.
    Mohan SV; Srikanth S
    Bioresour Technol; 2011 Nov; 102(22):10210-20. PubMed ID: 21920735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel electrochemical oxidation-methanogenesis system for simultaneously degrading antibiotics and reducing CO
    Cheng S; Mao Z; Sun Y; Yang J; Yu Z; Gu R
    Sci Total Environ; 2021 Jan; 750():141732. PubMed ID: 32882500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persulfate enhanced electrochemical oxidation of highly toxic cyanide-containing organic wastewater using boron-doped diamond anode.
    Yang W; Liu G; Chen Y; Miao D; Wei Q; Li H; Ma L; Zhou K; Liu L; Yu Z
    Chemosphere; 2020 Aug; 252():126499. PubMed ID: 32224356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.