BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32197205)

  • 1. Inhibition evaluation of gas inhibitors in micron-sized aluminum dust explosion.
    Zhang S; Bi M; Jiang H; Gao W
    J Hazard Mater; 2020 Jul; 393():122524. PubMed ID: 32197205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition characteristics research of aluminum alloy polishing dust explosion through addition of ultrafine Al(OH)
    Lv C; Wang X; Xue S; Xia X; Wang S
    Heliyon; 2023 Sep; 9(9):e19747. PubMed ID: 37809580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flame suppression mechanism of aluminum dust cloud by melamine cyanurate and melamine polyphosphate.
    Jiang H; Bi M; Ma D; Li B; Cong H; Gao W
    J Hazard Mater; 2019 Apr; 368():797-810. PubMed ID: 30743227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition evaluation of ABC powder in aluminum dust explosion.
    Jiang H; Bi M; Li B; Zhang D; Gao W
    J Hazard Mater; 2019 Jan; 361():273-282. PubMed ID: 30205267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The quantitative studies on gas explosion suppression by an inert rock dust deposit.
    Song Y; Zhang Q
    J Hazard Mater; 2018 Jul; 353():62-69. PubMed ID: 29635175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of aluminum dust explosion by NaHCO
    Jiang H; Bi M; Gao W; Gan B; Zhang D; Zhang Q
    J Hazard Mater; 2018 Feb; 344():902-912. PubMed ID: 29195101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression mechanism of Al dust explosion by melamine polyphosphate and melamine cyanurate.
    Jiang H; Bi M; Gao W
    J Hazard Mater; 2020 Mar; 386():121648. PubMed ID: 31740308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of dust dispersibility on the suppressant enhanced explosion parameter (SEEP) in flame propagation of Al dust clouds.
    Bu Y; Amyotte P; Li C; Yuan W; Yuan C; Li G
    J Hazard Mater; 2021 Feb; 404(Pt B):124119. PubMed ID: 33075625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High methane natural gas/air explosion characteristics in confined vessel.
    Tang C; Zhang S; Si Z; Huang Z; Zhang K; Jin Z
    J Hazard Mater; 2014 Aug; 278():520-8. PubMed ID: 25010457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Dust Layers in Connecting Pipes on Explosion Propagation Characteristics of Flake Aluminum Powder in Cylindrical Interconnected Vessels.
    Wang D; Jing Q; Cheng Y
    ACS Omega; 2023 Jan; 8(2):2197-2212. PubMed ID: 36687091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on the Inhibition of Aluminum Dust Explosion by Sodium Bicarbonate and Its Solid Product Sodium Carbonate.
    Chen X; Lu K; Xiao Y; Su B; Wang Y; Zhao T
    ACS Omega; 2022 Jan; 7(1):617-628. PubMed ID: 35036728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of wood dust explosion by ultrafine magnesium hydroxide.
    Huang C; Chen X; Yuan B; Zhang H; Dai H; He S; Zhang Y; Niu Y; Shen S
    J Hazard Mater; 2019 Oct; 378():120723. PubMed ID: 31216501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure and Flame Propagation Characteristics of Suspended Coal Dust Explosions Induced by Gas Explosions.
    Xun Jing G; Sun Y; Shuai Guo S
    ACS Omega; 2024 Apr; 9(14):16648-16655. PubMed ID: 38617661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of hydrogen explosion control measures by using l-phenylalanine for aluminum wet dust removal systems.
    Zheng X; Xu K; Wang Y; Shen R; Wang Q
    RSC Adv; 2018 Dec; 8(72):41308-41316. PubMed ID: 35559318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study on explosion characteristics of ethanol gasoline-air mixture and its mitigation using heptafluoropropane.
    Li G; Wang X; Xu H; Liu Y; Zhang H
    J Hazard Mater; 2019 Oct; 378():120711. PubMed ID: 31202070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation.
    Myers TJ
    J Hazard Mater; 2008 Nov; 159(1):72-80. PubMed ID: 18423857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanometal Dust Explosion in Confined Vessel: Combustion and Kinetic Analysis.
    Mohd Mokhtar K; Kasmani RM; Che Hassan CR; Hamid MD; Mohamad Nor MI; Mohd Junaidi MU; Ibrahim N
    ACS Omega; 2021 Jul; 6(28):17831-17838. PubMed ID: 34308018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient reaction process and mechanism of cornstarch/air and CH
    Jing Q; Wang D; Liu Q; Shen Y; Wang Z; Chen X; Zhong Y
    J Hazard Mater; 2021 May; 409():124475. PubMed ID: 33187801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moderation of Al dust explosions by micro- and nano-sized Al
    Bu Y; Li C; Amyotte P; Yuan W; Yuan C; Li G
    J Hazard Mater; 2020 Jan; 381():120968. PubMed ID: 31446226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on Explosion Pressure Characteristics of Long Flame Coal Dust and the Inhibition Effect of Different Explosion Suppressants.
    Liu T; Gao Z; Xu Y; Duan G; Wang X
    ACS Omega; 2023 Oct; 8(39):35919-35928. PubMed ID: 37810723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.